-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDecom_LogAttention.py
95 lines (88 loc) · 4.19 KB
/
Decom_LogAttention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.Embed import DataEmbedding, DataEmbedding_wo_pos
from layers.SelfAttention_Family import AttentionLayer, LogSparseAttention
from layers.Autoformer_EncDec import Encoder, Decoder, EncoderLayer, DecoderLayer, my_Layernorm, series_decomp
import math
import numpy as np
class Model(nn.Module):
def __init__(self, configs):
super(Model, self).__init__()
self.seq_len = configs.seq_len
self.label_len = configs.label_len
self.pred_len = configs.pred_len
self.output_attention = configs.output_attention
# Decomp
kernel_size = configs.moving_avg
self.decomp = series_decomp(kernel_size)
# Embedding
# The series-wise connection inherently contains the sequential information.
# Thus, we can discard the position embedding of transformers.
self.enc_embedding = DataEmbedding_wo_pos(configs.enc_in, configs.d_model, configs.embed, configs.freq,
configs.dropout)
self.dec_embedding = DataEmbedding_wo_pos(configs.dec_in, configs.d_model, configs.embed, configs.freq,
configs.dropout)
# Encoder
self.encoder = Encoder(
[
EncoderLayer(
AttentionLayer(
LogSparseAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=configs.output_attention),
configs.d_model, configs.n_heads),
configs.d_model,
configs.d_ff,
moving_avg=configs.moving_avg,
dropout=configs.dropout,
activation=configs.activation
) for l in range(configs.e_layers)
],
norm_layer=my_Layernorm(configs.d_model)
)
# Decoder
self.decoder = Decoder(
[
DecoderLayer(
AttentionLayer(
LogSparseAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=False),
configs.d_model, configs.n_heads),
AttentionLayer(
LogSparseAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=False),
configs.d_model, configs.n_heads),
configs.d_model,
configs.c_out,
configs.d_ff,
moving_avg=configs.moving_avg,
dropout=configs.dropout,
activation=configs.activation,
)
for l in range(configs.d_layers)
],
norm_layer=my_Layernorm(configs.d_model),
projection=nn.Linear(configs.d_model, configs.c_out, bias=True)
)
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec,
enc_self_mask=None, dec_self_mask=None, dec_enc_mask=None):
# decomp init
mean = torch.mean(x_enc, dim=1).unsqueeze(1).repeat(1, self.pred_len, 1)
zeros = torch.zeros([x_dec.shape[0], self.pred_len, x_dec.shape[2]]).cuda()
seasonal_init, trend_init = self.decomp(x_enc)
# decoder input
trend_init = torch.cat([trend_init[:, -self.label_len:, :], mean], dim=1)
seasonal_init = torch.cat([seasonal_init[:, -self.label_len:, :], zeros], dim=1)
# enc
enc_out = self.enc_embedding(x_enc, x_mark_enc)
enc_out, attns = self.encoder(enc_out, attn_mask=enc_self_mask)
# dec
dec_out = self.dec_embedding(seasonal_init, x_mark_dec)
seasonal_part, trend_part = self.decoder(dec_out, enc_out, x_mask=dec_self_mask, cross_mask=dec_enc_mask,
trend=trend_init)
# final
dec_out = trend_part + seasonal_part
if self.output_attention:
return dec_out[:, -self.pred_len:, :], attns
else:
return dec_out[:, -self.pred_len:, :] # [B, L, D]