forked from GoogleCloudPlatform/python-docs-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoml_tables_predict.py
123 lines (99 loc) · 3.82 KB
/
automl_tables_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/usr/bin/env python
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This application demonstrates how to perform basic operations on prediction
with the Google AutoML Tables API.
For more information, the documentation at
https://cloud.google.com/automl-tables/docs.
"""
import argparse
import os
def predict(project_id,
compute_region,
model_display_name,
inputs):
"""Make a prediction."""
# [START automl_tables_predict]
# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# model_display_name = 'MODEL_DISPLAY_NAME_HERE'
# inputs = {'value': 3, ...}
from google.cloud import automl_v1beta1 as automl
client = automl.TablesClient(project=project_id, region=compute_region)
response = client.predict(
model_display_name=model_display_name,
inputs=inputs)
print("Prediction results:")
for result in response.payload:
print("Predicted class name: {}".format(result.display_name))
print("Predicted class score: {}".format(
result.classification.score))
# [END automl_tables_predict]
def batch_predict(project_id,
compute_region,
model_display_name,
gcs_input_uris,
gcs_output_uri):
"""Make a batch of predictions."""
# [START automl_tables_batch_predict]
# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# model_display_name = 'MODEL_DISPLAY_NAME_HERE'
# gcs_input_uris = ['gs://path/to/file.csv]
# gcs_output_uri = 'gs://path'
from google.cloud import automl_v1beta1 as automl
client = automl.TablesClient(project=project_id, region=compute_region)
# Query model
response = client.batch_predict(
gcs_input_uris, gcs_output_uri, model_display_name=model_display_name
)
print("Making batch prediction... ")
response.result()
print("Batch prediction complete.\n{}".format(response.metadata))
# [END automl_tables_batch_predict]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
)
subparsers = parser.add_subparsers(dest="command")
predict_parser = subparsers.add_parser("predict", help=predict.__doc__)
predict_parser.add_argument("--model_display_name")
predict_parser.add_argument("--file_path")
batch_predict_parser = subparsers.add_parser(
"batch_predict", help=predict.__doc__
)
batch_predict_parser.add_argument("--model_display_name")
batch_predict_parser.add_argument("--input_path")
batch_predict_parser.add_argument("--output_path")
project_id = os.environ["PROJECT_ID"]
compute_region = os.environ["REGION_NAME"]
args = parser.parse_args()
if args.command == "predict":
predict(
project_id,
compute_region,
args.model_display_name,
args.file_path,
)
if args.command == "batch_predict":
batch_predict(
project_id,
compute_region,
args.model_display_name,
args.input_path,
args.output_path,
)