This project is an unofficial implementation of "EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies", which is implemented step-by-step according to the pseudocode in the appendix
./data
-
ImageNet
- n01440764
- n01443537 ...
-
MVTec_AD
- bottle
- ground_truth
- test
- train
- cable
- ground_truth
- test
- train ...
- bottle
-
result
conda activate <your_env>
pip install -r requirements.txt
python distillaion_training.py
python train_reduced_student.py
MVTec bottle
image_AUROC: 1.0
image_F1Score: 1.0
pixel_AUROC: 0.9876494407653809
pixel_F1Score: 0.7927650213241577