forked from chesskit-app/Stockfish
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.cpp
249 lines (200 loc) · 9.73 KB
/
evaluate.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "evaluate.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <optional>
#include <sstream>
#include <unordered_map>
#include <vector>
#include "incbin/incbin.h"
#include "misc.h"
#include "nnue/evaluate_nnue.h"
#include "nnue/nnue_architecture.h"
#include "position.h"
#include "types.h"
#include "uci.h"
#include "ucioption.h"
// Macro to embed the default efficiently updatable neural network (NNUE) file
// data in the engine binary (using incbin.h, by Dale Weiler).
// This macro invocation will declare the following three variables
// const unsigned char gEmbeddedNNUEData[]; // a pointer to the embedded data
// const unsigned char *const gEmbeddedNNUEEnd; // a marker to the end
// const unsigned int gEmbeddedNNUESize; // the size of the embedded file
// Note that this does not work in Microsoft Visual Studio.
#if !defined(_MSC_VER) && !defined(NNUE_EMBEDDING_OFF)
INCBIN(EmbeddedNNUEBig, EvalFileDefaultNameBig);
INCBIN(EmbeddedNNUESmall, EvalFileDefaultNameSmall);
#else
const unsigned char gEmbeddedNNUEBigData[1] = {0x0};
const unsigned char* const gEmbeddedNNUEBigEnd = &gEmbeddedNNUEBigData[1];
const unsigned int gEmbeddedNNUEBigSize = 1;
const unsigned char gEmbeddedNNUESmallData[1] = {0x0};
const unsigned char* const gEmbeddedNNUESmallEnd = &gEmbeddedNNUESmallData[1];
const unsigned int gEmbeddedNNUESmallSize = 1;
#endif
namespace Stockfish {
namespace Eval {
// Tries to load a NNUE network at startup time, or when the engine
// receives a UCI command "setoption name EvalFile value nn-[a-z0-9]{12}.nnue"
// The name of the NNUE network is always retrieved from the EvalFile option.
// We search the given network in three locations: internally (the default
// network may be embedded in the binary), in the active working directory and
// in the engine directory. Distro packagers may define the DEFAULT_NNUE_DIRECTORY
// variable to have the engine search in a special directory in their distro.
NNUE::EvalFiles NNUE::load_networks(const std::string& rootDirectory,
const OptionsMap& options,
NNUE::EvalFiles evalFiles) {
for (auto& [netSize, evalFile] : evalFiles)
{
std::string user_eval_file = options[evalFile.optionName];
if (user_eval_file.empty())
user_eval_file = evalFile.defaultName;
#if defined(DEFAULT_NNUE_DIRECTORY)
std::vector<std::string> dirs = {"<internal>", "", rootDirectory,
stringify(DEFAULT_NNUE_DIRECTORY)};
#else
std::vector<std::string> dirs = {"<internal>", "", rootDirectory};
#endif
for (const std::string& directory : dirs)
{
if (evalFile.current != user_eval_file)
{
if (directory != "<internal>")
{
std::ifstream stream(directory + user_eval_file, std::ios::binary);
auto description = NNUE::load_eval(stream, netSize);
if (description.has_value())
{
evalFile.current = user_eval_file;
evalFile.netDescription = description.value();
}
}
if (directory == "<internal>" && user_eval_file == evalFile.defaultName)
{
// C++ way to prepare a buffer for a memory stream
class MemoryBuffer: public std::basic_streambuf<char> {
public:
MemoryBuffer(char* p, size_t n) {
setg(p, p, p + n);
setp(p, p + n);
}
};
MemoryBuffer buffer(
const_cast<char*>(reinterpret_cast<const char*>(
netSize == Small ? gEmbeddedNNUESmallData : gEmbeddedNNUEBigData)),
size_t(netSize == Small ? gEmbeddedNNUESmallSize : gEmbeddedNNUEBigSize));
(void) gEmbeddedNNUEBigEnd; // Silence warning on unused variable
(void) gEmbeddedNNUESmallEnd;
std::istream stream(&buffer);
auto description = NNUE::load_eval(stream, netSize);
if (description.has_value())
{
evalFile.current = user_eval_file;
evalFile.netDescription = description.value();
}
}
}
}
}
return evalFiles;
}
// Verifies that the last net used was loaded successfully
void NNUE::verify(const OptionsMap& options,
const std::unordered_map<Eval::NNUE::NetSize, EvalFile>& evalFiles) {
for (const auto& [netSize, evalFile] : evalFiles)
{
std::string user_eval_file = options[evalFile.optionName];
if (user_eval_file.empty())
user_eval_file = evalFile.defaultName;
if (evalFile.current != user_eval_file)
{
std::string msg1 =
"Network evaluation parameters compatible with the engine must be available.";
std::string msg2 =
"The network file " + user_eval_file + " was not loaded successfully.";
std::string msg3 = "The UCI option EvalFile might need to specify the full path, "
"including the directory name, to the network file.";
std::string msg4 = "The default net can be downloaded from: "
"https://tests.stockfishchess.org/api/nn/"
+ evalFile.defaultName;
std::string msg5 = "The engine will be terminated now.";
sync_cout << "info string ERROR: " << msg1 << sync_endl;
sync_cout << "info string ERROR: " << msg2 << sync_endl;
sync_cout << "info string ERROR: " << msg3 << sync_endl;
sync_cout << "info string ERROR: " << msg4 << sync_endl;
sync_cout << "info string ERROR: " << msg5 << sync_endl;
exit(EXIT_FAILURE);
}
sync_cout << "info string NNUE evaluation using " << user_eval_file << sync_endl;
}
}
}
// Returns a static, purely materialistic evaluation of the position from
// the point of view of the given color. It can be divided by PawnValue to get
// an approximation of the material advantage on the board in terms of pawns.
int Eval::simple_eval(const Position& pos, Color c) {
return PawnValue * (pos.count<PAWN>(c) - pos.count<PAWN>(~c))
+ (pos.non_pawn_material(c) - pos.non_pawn_material(~c));
}
// Evaluate is the evaluator for the outer world. It returns a static evaluation
// of the position from the point of view of the side to move.
Value Eval::evaluate(const Position& pos, int optimism) {
assert(!pos.checkers());
int simpleEval = simple_eval(pos, pos.side_to_move());
bool smallNet = std::abs(simpleEval) > 1050;
int nnueComplexity;
Value nnue = smallNet ? NNUE::evaluate<NNUE::Small>(pos, true, &nnueComplexity)
: NNUE::evaluate<NNUE::Big>(pos, true, &nnueComplexity);
// Blend optimism and eval with nnue complexity and material imbalance
optimism += optimism * (nnueComplexity + std::abs(simpleEval - nnue)) / 512;
nnue -= nnue * (nnueComplexity + std::abs(simpleEval - nnue)) / 32768;
int npm = pos.non_pawn_material() / 64;
int v = (nnue * (915 + npm + 9 * pos.count<PAWN>()) + optimism * (154 + npm)) / 1024;
// Damp down the evaluation linearly when shuffling
int shuffling = pos.rule50_count();
v = v * (200 - shuffling) / 214;
// Guarantee evaluation does not hit the tablebase range
v = std::clamp(v, VALUE_TB_LOSS_IN_MAX_PLY + 1, VALUE_TB_WIN_IN_MAX_PLY - 1);
return v;
}
// Like evaluate(), but instead of returning a value, it returns
// a string (suitable for outputting to stdout) that contains the detailed
// descriptions and values of each evaluation term. Useful for debugging.
// Trace scores are from white's point of view
std::string Eval::trace(Position& pos) {
if (pos.checkers())
return "Final evaluation: none (in check)";
std::stringstream ss;
ss << std::showpoint << std::noshowpos << std::fixed << std::setprecision(2);
ss << '\n' << NNUE::trace(pos) << '\n';
ss << std::showpoint << std::showpos << std::fixed << std::setprecision(2) << std::setw(15);
Value v;
v = NNUE::evaluate<NNUE::Big>(pos, false);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "NNUE evaluation " << 0.01 * UCI::to_cp(v) << " (white side)\n";
v = evaluate(pos, VALUE_ZERO);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "Final evaluation " << 0.01 * UCI::to_cp(v) << " (white side)";
ss << " [with scaled NNUE, ...]";
ss << "\n";
return ss.str();
}
} // namespace Stockfish