forked from HarryVolek/PyTorch_Speaker_Verification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_load.py
87 lines (66 loc) · 2.63 KB
/
data_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 6 20:55:52 2018
@author: harry
"""
import glob
import numpy as np
import os
import random
from random import shuffle
import torch
from torch.utils.data import Dataset
from hparam import hparam as hp
from utils import mfccs_and_spec
class SpeakerDatasetTIMIT(Dataset):
def __init__(self):
if hp.training:
self.path = hp.data.train_path_unprocessed
self.utterance_number = hp.train.M
else:
self.path = hp.data.test_path_unprocessed
self.utterance_number = hp.test.M
self.speakers = glob.glob(os.path.dirname(self.path))
shuffle(self.speakers)
def __len__(self):
return len(self.speakers)
def __getitem__(self, idx):
speaker = self.speakers[idx]
wav_files = glob.glob(speaker+'/*.WAV')
shuffle(wav_files)
wav_files = wav_files[0:self.utterance_number]
mel_dbs = []
for f in wav_files:
_, mel_db, _ = mfccs_and_spec(f, wav_process = True)
mel_dbs.append(mel_db)
return torch.Tensor(mel_dbs)
class SpeakerDatasetTIMITPreprocessed(Dataset):
def __init__(self, shuffle=True, utter_start=0):
# data path
if hp.training:
self.path = hp.data.train_path
self.utter_num = hp.train.M
else:
self.path = hp.data.test_path
self.utter_num = hp.test.M
self.file_list = os.listdir(self.path)
self.shuffle=shuffle
self.utter_start = utter_start
def __len__(self):
return len(self.file_list)
def __getitem__(self, idx):
np_file_list = os.listdir(self.path)
if self.shuffle:
selected_file = random.sample(np_file_list, 1)[0] # select random speaker
else:
selected_file = np_file_list[idx]
utters = np.load(os.path.join(self.path, selected_file)) # load utterance spectrogram of selected speaker
if self.shuffle:
utter_index = np.random.randint(0, utters.shape[0], self.utter_num) # select M utterances per speaker
utterance = utters[utter_index]
else:
utterance = utters[self.utter_start: self.utter_start+self.utter_num] # utterances of a speaker [batch(M), n_mels, frames]
utterance = utterance[:,:,:160] # TODO implement variable length batch size
utterance = torch.tensor(np.transpose(utterance, axes=(0,2,1))) # transpose [batch, frames, n_mels]
return utterance