Optimization for Machine Learning CS-439

Lecture 6: Non-convex optimization; Accelerated Gradient Descent

Nicolas Flammarion

EPFL - github.com/epfml/OptML_course

April 12, 2021

Trajectory Analysis

Even if the "landscape" (graph) of a nonconvex function has local minima, saddle points, and flat parts, gradient descent may avoid them and still converge to a global minimum.

For this, one needs a good starting point and some theoretical understanding of what happens when we start there—this is **trajectory analysis**.

2018: trajectory analysis for training deep linear linear neural networks, under suitable conditions [ACGH18].

Here: vastly simplified setting that allows us to show the main ideas (and limitations).

Linear models with several outputs

Recall: Learning linear models

- igstarrow n inputs $\mathbf{x}_1, \ldots, \mathbf{x}_n$, where each input $\mathbf{x}_i \in \mathbb{R}^d$
- $n \text{ outputs } y_1, \ldots, y_n \in \mathbb{R}$
- Hypothesis (after centering):

$$y_i \approx \mathbf{w}^\top x_i$$

for a weight vector $\mathbf{w} = (w_1, \dots, w_d) \in \mathbb{R}^d$ to be learned.

Now more than one output value:

- lacksim n outputs $\mathbf{y}_1,\ldots,\mathbf{y}_n$, where each output $\mathbf{y}_i\in\mathbb{R}^m$
- ► Hypothesis:

 $\mathbf{y}_i \approx W \mathbf{x}_i,$

for a weight matrix $W \in \mathbb{R}^{m \times d}$ to be learned.

Minimizing the least squares error

Compute

$$W^{\star} = \operatorname{argmin}_{W \in \mathbb{R}^{m \times d}} \sum_{i=1}^{n} \|W\mathbf{x}_{i} - \mathbf{y}_{i}\|^{2}.$$

•
$$X \in \mathbb{R}^{d imes n}$$
: matrix whose columns are the \mathbf{x}_i

• $Y \in \mathbb{R}^{m \times n}$: matrix whose columns are the \mathbf{y}_i

Then

$$W^{\star} = \operatorname*{argmin}_{W \in \mathbb{R}^{m \times d}} \|WX - Y\|_F^2,$$

where $||A||_F = \sqrt{\sum_{i,j} a_{ij}^2}$ is the Frobenius norm of a matrix A.

Frobenius norm of A = Euclidean norm of vec(A) ("flattening" of A)

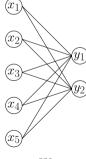
Minimizing the least squares error II

 $W^{\star} = \underset{W \in \mathbb{R}^{m \times d}}{\operatorname{argmin}} \|WX - Y\|_{F}^{2}$

is the global minimum of a convex quadratic function f(W).

To find W^{\star} , solve $\nabla f(W) = \mathbf{0}$ (system of linear equations).

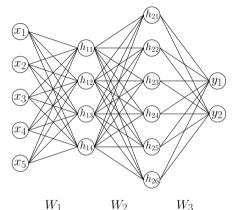
 \Leftrightarrow training a linear neural network with one layer under least squares error.



$$\mathbf{x} \mapsto \mathbf{y} = W\mathbf{x}$$

W

Deep linear neural networks



$$\mathbf{x} \mapsto \mathbf{y} = W_3 W_2 W_1 \mathbf{x}$$

Not more expressive:

 $\mathbf{x} \mapsto \mathbf{y} = W_3 W_2 W_1 \mathbf{x} \quad \Leftrightarrow \quad \mathbf{x} \mapsto \mathbf{y} = W \mathbf{x}, \ W := W_3 W_2 W_1.$

Training deep linear neural networks

With ℓ layers:

$$W^{\star} = \operatorname*{argmin}_{W_{1}, W_{2}, \dots, W_{\ell}} \| W_{\ell} W_{\ell-1} \cdots W_{1} X - Y \|_{F}^{2},$$

Nonconvex function for $\ell > 1$.

Simple playground in which we can try to understand why training deep neural networks with gradient descent works.

Here: all matrices are 1×1 , $W_i = x_i, X = 1, Y = 1, \ell = d \Rightarrow f : \mathbb{R}^d \to \mathbb{R}$,

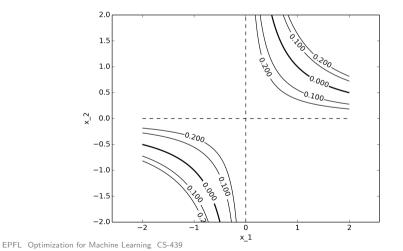
$$f(\mathbf{x}) := \frac{1}{2} \left(\prod_{k=1}^{d} x_k - 1 \right)^2$$

Toy example in our simple playground.

But analysis of gradient descent on f has similar ingredients as the one on general deep linear neural networks [ACGH18].

A simple nonconvex function

As *d* is fixed, abbreviate
$$\prod_{k=1}^{d} x_k$$
 by $\prod_k x_k$: $f(\mathbf{x}) = \frac{1}{2} \left(\prod_k x_k - 1 \right)^2$

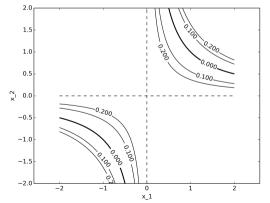


Level set plot

8/30

The gradient

$$abla f(\mathbf{x}) = \left(\prod_k x_k - 1\right) \left(\prod_{k \neq 1} x_k, \dots, \prod_{k \neq d} x_k\right).$$



Critical points ($\nabla f(\mathbf{x}) = \mathbf{0}$):

• $\prod_k x_k = 1$ (global minima)

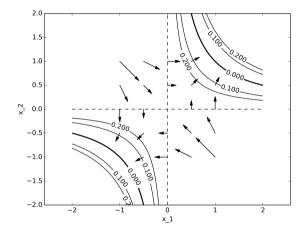
•
$$d = 2$$
: the hyperbola

$$\{(x_1, x_2) : x_1 x_2 = 1\}$$

 at least two of the xk are zero (saddle points)

•
$$d = 2$$
: the origin
 $(x_1, x_2) = (0, 0)$

Negative gradient directions (followed by gradient descent)



Difficult to avoid convergence to a global minimum, but it is possible (Exercise 40).

Convergence analysis: Overview

Want to show that for any d > 1, and from anywhere in $X = {\mathbf{x} : \mathbf{x} > \mathbf{0}, \prod_k \mathbf{x}_k \le 1}$, gradient descent will converge to a global minimum.

f is not smooth over X. We show that f is smooth along the trajectory of gradient descent for suitable L, so that we get sufficient decrease

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2, \quad t \ge 0.$$

Then, we cannot converge to a saddle point: all these have (at least two) zero entries and therefore function value 1/2. But for starting point $\mathbf{x}_0 \in X$, we have $f(\mathbf{x}_0) < 1/2$, so we can never reach a saddle while decreasing f.

Doesn't this imply converge to a global mimimum? No!

- Sublevel sets are unbounded, so we could in principle run off to infinity.
- Other bad things might happen (we haven't characterized what can go wrong).

Convergence analysis: Overview II

For $\mathbf{x} > \mathbf{0}, \prod_k \mathbf{x}_k \ge 1$, we also get convergence (Exercise 39).

 \Rightarrow convergence from anywhere in the interior of the positive orthant $\{x : x > 0\}$.

But there are also starting points from which gradient descent will not converge to a global minimum (Exercise 40).

Main tool: Balanced iterates

Definition

Let $\mathbf{x} > \mathbf{0}$ (componentwise), and let $c \ge 1$ be a real number. \mathbf{x} is called *c*-balanced if $x_i \le cx_j$ for all $1 \le i, j \le d$.

Any initial iterate $\mathbf{x}_0 > \mathbf{0}$ is *c*-balanced for some (possibly large) *c*.

Lemma

Let $\mathbf{x} > \mathbf{0}$ be *c*-balanced with $\prod_k x_k \leq 1$. Then for any stepsize $\gamma > 0$, $\mathbf{x}' := \mathbf{x} - \gamma \nabla f(\mathbf{x})$ satisfies $\mathbf{x}' \geq \mathbf{x}$ (componentwise) and is also *c*-balanced. Proof.

$$\Delta := -\gamma(\prod_k x_k - 1)(\prod_k x_k) \ge 0. \quad \nabla f(\mathbf{x}) = (\prod_k x_k - 1) \left(\prod_{k \ne 1} x_k, \dots, \prod_{k \ne d} x_k\right).$$

Gradient descent step:

For i, j, we have $x_i \leq cx_j$ and $x_j \leq cx_i$ ($\Leftrightarrow 1/x_i \leq c/x_j$). We therefore get

 $x'_i = x_i + \frac{\Delta}{x_i} \le cx_j + \frac{\Delta c}{x_j} = cx'_j.$

$$x'_k = x_k + \frac{\Delta}{x_k} \ge x_k, \quad k = 1, \dots, d.$$

Bounded Hessians along the trajectory

Compute $\nabla^2 f(\mathbf{x})$:

 $\nabla^2 f(\mathbf{x})_{ij}$ is the *j*-th partial derivative of the *i*-th entry of $\nabla f(\mathbf{x})$.

$$(\nabla f)_i = \left(\prod_k x_k - 1\right) \prod_{k \neq i} x_k$$

$$\nabla^2 f(\mathbf{x})_{ij} = \begin{cases} \left(\prod_{k \neq i} x_k\right)^2, & j = i\\ 2\prod_{k \neq i} x_k \prod_{k \neq j} x_k - \prod_{k \neq i, j} x_k, & j \neq i \end{cases}$$

Need to bound $\prod_{k \neq i} x_k$, $\prod_{k \neq j} x_k$, $\prod_{k \neq i,j} x_k$!

Bounded Hessians along the trajectory II

Lemma

Suppose that $\mathbf{x} > \mathbf{0}$ is *c*-balanced. Then for any $I \subseteq \{1, \ldots, d\}$, we have

$$\left(\frac{1}{c}\right)^{|I|} \left(\prod_{k} x_{k}\right)^{1-|I|/d} \leq \prod_{k \notin I} x_{k} \leq c^{|I|} \left(\prod_{k} x_{k}\right)^{1-|I|/d}$$

Proof.

For any i, we have $x_i^d \ge (1/c)^d \prod_k x_k$ by balancedness, hence $x_i \ge (1/c) (\prod_k x_k)^{1/d}$. It follows that

$$\prod_{k \notin I} x_k = \frac{\prod_k x_k}{\prod_{i \in I} x_i} \le \frac{\prod_k x_k}{(1/c)^{|I|} (\prod_k x_k)^{|I|/d}} = c^{|I|} \left(\prod_k x_k\right)^{1-|I|/d}$$

The lower bound follows in the same way from $x_i^d \leq c^d \prod_k x_k$.

EPFL Optimization for Machine Learning CS-439

.

Bounded Hessians along the trajectory III

Lemma

Let $\mathbf{x} > \mathbf{0}$ be *c*-balanced with $\prod_k x_k \leq 1$. Then

$$\left\|\nabla^2 f(\mathbf{x})\right\| \leq \left\|\nabla^2 f(\mathbf{x})\right\|_F \leq 3dc^2.$$

where $||A||_F$ is the Frobenius norm and ||A|| the spectral norm.

Proof.

$$\begin{split} \|A\| &\leq \|A\|_F: \text{ Exercise 41. Now use previous lemma and } \prod_k x_k \leq 1: \\ \left|\nabla^2 f(\mathbf{x})_{ii}\right| &= |(\prod_{k \neq i} x_k)^2| \leq c^2 \\ \left|\nabla^2 f(\mathbf{x})_{ij}\right| &\leq |2 \prod_{k \neq i} x_k \prod_{k \neq j} x_k| + |\prod_{k \neq i,j} x_k| \leq 3c^2. \end{split}$$

Hence, $\left\|
abla^2 f(\mathbf{x}) \right\|_F^2 \leq 9 d^2 c^4$. Taking square roots, the statement follows.

Smoothness along the trajectory

Lemma

Let $\mathbf{x} > \mathbf{0}$ be c-balanced with $\prod_k x_k < 1$, $L = 3dc^2$. Let $\gamma := 1/L$. Then for all $0 \le \nu \le \gamma$,

$$\mathbf{x}' := \mathbf{x} - \nu \nabla f(\mathbf{x}) \ge \mathbf{x}$$

is c-balanced with $\prod_k x'_k \leq 1$, and f is smooth with parameter L over the line segment connecting \mathbf{x} and $\mathbf{x} - \gamma \nabla f(\mathbf{x})$.

Proof.

- $\mathbf{x}' \geq \mathbf{x} > \mathbf{0}$ is *c*-balanced by Lemma 6.5.
- $\nabla f(\mathbf{x}) \neq \mathbf{0}$ (due to $\mathbf{x}' > \mathbf{0}, \prod_k x_k < 1$, we can't be at a critical point).
- No overshooting: we can't reach ∏_k x'_k = 1 (global minimum) for ν < γ, as f is smooth with parameter L between x and x' (using previous bound on Hessians in Lemma 6.1).</p>

• By continutity,
$$\prod_k x'_k \leq 1$$
 for all $\nu \leq \gamma$.

• f is smooth with parameter L between \mathbf{x} and \mathbf{x}' for $\nu = \gamma$.

Convergence

Theorem

Let $c \ge 1$ and $\delta > 0$ such that $\mathbf{x}_0 > \mathbf{0}$ is c-balanced with $\delta \le \prod_k (\mathbf{x}_0)_k < 1$. Choosing stepsize

$$\gamma = \frac{1}{3dc^2},$$

gradient descent satisfies

$$f(\mathbf{x}_T) \le \left(1 - \frac{\delta^2}{3c^4}\right)^T f(\mathbf{x}_0), \quad T \ge 0.$$

- Error converges to 0 exponentially fast.
- Exercise 42: iterates themselves converge (to an optimal solution).

Convergence: Proof Proof.

- For $t \ge 0$, f is smooth between \mathbf{x}_t and \mathbf{x}_{t+1} with parameter $L = 3dc^2$.
- Sufficient decrease:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{6dc^2} \left\| \nabla f(\mathbf{x}_t) \right\|^2.$$

For every c-balanced \mathbf{x} with $\delta \leq \prod_k x_k \leq 1$, $\left\|
abla f(\mathbf{x}) \right\|^2$ equals

$$2f(\mathbf{x})\sum_{i=1}^{d}\left(\prod_{k\neq i} x_k\right)^2 \ge 2f(\mathbf{x})\frac{d}{c^2}\left(\prod_k x_k\right)^{2-2/d} \ge 2f(\mathbf{x})\frac{d}{c^2}\left(\prod_k x_k\right)^2 \ge 2f(\mathbf{x})\frac{d}{c^2}\delta^2.$$

• Hence,
$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) - \frac{1}{6dc^2} 2f(\mathbf{x}_t) \frac{d}{c^2} \delta^2 = f(\mathbf{x}_t) \left(1 - \frac{\delta^2}{3c^4}\right).$$

Discussion

Fast convergence as for strongly convex functions!

But there is a catch...

Consider starting point $\mathbf{x}_0 = (1/2, \dots, 1/2)$.

 $\delta \leq \prod_k (\mathbf{x}_0)_k = 2^{-d}.$

Decrease in function value by a factor of

$$\left(1-\frac{1}{3\cdot 4^d}\right),\,$$

per step.

Need $T \approx 4^d$ to reduce the initial error by a constant factor not depending on d. Problem: gradients are exponentially small in the beginning, extremely slow progress. For polynomial runtime, must start at distance $O(1/\sqrt{d})$ from optimality.

Chapter 7

Accelerated Gradient Descent

Smooth convex functions: less than $\mathcal{O}(1/\varepsilon)$ steps?

Fixing L and $R = ||\mathbf{x}_0 - \mathbf{x}^*||$, the error of gradient descent after T steps is O(1/T). Lee and Wright [LW19]:

- A better upper bound of o(1/T) holds.
- A lower bound of $\Omega(1/T^{1+\delta})$ also holds, for any fixed $\delta > 0$.

So, gradient descent is slightly faster on smooth functions than what we proved, but not significantly.

First-order methods: less than $\mathcal{O}(1/\varepsilon)$ steps?

Maybe gradient descent is not the best possible algorithm?

After all, it is just some algorithm that uses gradient information.

First-order method:

- An algorithm that gains access to f only via an oracle that is able to return values of f and ∇f at arbitrary points.
- Gradient descent is a specific first-order method.

What is the **best** first-order method for smooth convex functions, the one with the smallest upper bound on the number of oracle calls in the worst case?

Nemirovski and Yudin 1979 [NY83]: every first-order method needs in the worst case $\Omega(1/\sqrt{\varepsilon})$ steps (gradient evaluations) in order to achieve an additive error of ε on smooth functions.

There is a gap between $O(1/\varepsilon)$ (gradient descent) and the lower bound!

Acceleration for smooth convex functions: $O(1/\sqrt{\varepsilon})$ steps

Nesterov 1983 [Nes83, Nes18]: There is a first-order method that needs only $O(1/\sqrt{\varepsilon})$ steps on smooth convex functions, and by the lower bound of Nemirovski and Yudin, this is a best possible algorithm!

The algorithm is known as (Nesterov's) accelerated gradient descent.

A number of (similar) optimal algorithms with other proofs of the $\mathcal{O}(1/\sqrt{\varepsilon})$ upper bound are known, but there is no well-established "simplest proof".

Here: a recent proof based on potential functions [BG17]. Proof is simple but not very instructive (it works, but it's not clear why).

Nesterov's accelerated gradient descent

Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex, differentiable, and smooth with parameter L. Choose $\mathbf{z}_0 = \mathbf{y}_0 = \mathbf{x}_0$ arbitrary. For $t \ge 0$, set

$$\begin{aligned} \mathbf{y}_{t+1} &:= \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \\ \mathbf{z}_{t+1} &:= \mathbf{z}_t - \frac{t+1}{2L} \nabla f(\mathbf{x}_t) \\ \mathbf{x}_{t+1} &:= \frac{t+1}{t+3} \mathbf{y}_{t+1} + \frac{2}{t+3} \mathbf{z}_{t+1}. \end{aligned}$$

- Perform a "smooth step" from \mathbf{x}_t to \mathbf{y}_{t+1} .
- Perform a more aggressive step from \mathbf{z}_t to \mathbf{z}_{t+1} .
- ► Next iterate x_{t+1} is a weighted average of y_{t+1} and z_{t+1}, where we compensate for the more aggressive step by giving z_{t+1} a relatively low weight.

Why should this work??

Nesterov's accelerated gradient descent: Error bound

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable with a global minimum \mathbf{x}^* ; furthermore, suppose that f is smooth with parameter L. Accelerated gradient descent yields

$$f(\mathbf{y}_T) - f(\mathbf{x}^*) \le \frac{2L \|\mathbf{z}_0 - \mathbf{x}^*\|^2}{T(T+1)}, \quad T > 0.$$

To reach error at most ε , accelerated gradient descent therefore only needs $O(1/\sqrt{\varepsilon})$ steps instead of $O(1/\varepsilon)$.

Recall the bound for gradient descent:

$$f(\mathbf{x}_T) - f(\mathbf{x}^{\star}) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2, \quad T > 0.$$

Nesterov's accelerated gradient descent: The potential function

Idea: assign a potential $\Phi(t)$ to each time t and show that $\Phi(t+1) \leq \Phi(t)$. Out of the blue: let's define the potential as

$$\Phi(t) := t(t+1) \left(f(\mathbf{y}_t) - f(\mathbf{x}^*) \right) + 2L \|\mathbf{z}_t - \mathbf{x}^*\|^2.$$

If we can show that the potential always decreases, we get

$$\underbrace{T(T+1)\left(f(\mathbf{y}_{T}) - f(\mathbf{x}^{\star})\right) + 2L \|\mathbf{z}_{T} - \mathbf{x}^{\star}\|^{2}}_{\Phi(T)} \leq \underbrace{2L \|\mathbf{z}_{0} - \mathbf{x}^{\star}\|^{2}}_{\Phi(0)}.$$

Rewriting this, we get the claimed error bound.

Potential function decrease: Three Ingredients

Sufficient decrease for the smooth step from \mathbf{x}_t to \mathbf{y}_{t+1} :

$$f(\mathbf{y}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2;$$
(1)

Vanilla analysis for the more aggressive step from \mathbf{z}_t to \mathbf{z}_{t+1} : $(\gamma = \frac{t+1}{2L}, \mathbf{g}_t = \nabla f(\mathbf{x}_t))$:

$$\mathbf{g}_{t}^{\top}(\mathbf{z}_{t} - \mathbf{x}^{\star}) = \frac{t+1}{4L} \|\mathbf{g}_{t}\|^{2} + \frac{L}{t+1} \left(\|\mathbf{z}_{t} - \mathbf{x}^{\star}\|^{2} - \|\mathbf{z}_{t+1} - \mathbf{x}^{\star}\|^{2} \right);$$
(2)

Convexity (graph of f is above the tangent hyperplane at \mathbf{x}_t):

$$f(\mathbf{x}_t) - f(\mathbf{w}) \le \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{w}), \quad \mathbf{w} \in \mathbb{R}^d.$$
(3)

Potential function decrease: Proof

By definition of potential,

$$\Phi(t+1) = t(t+1) \left(f(\mathbf{y}_{t+1}) - f(\mathbf{x}^{\star}) \right) + 2(t+1) \left(f(\mathbf{y}_{t+1}) - f(\mathbf{x}^{\star}) \right) + 2L \|\mathbf{z}_{t+1} - \mathbf{x}^{\star}\|^{2},
\Phi(t) = t(t+1) \left(f(\mathbf{y}_{t-1}) - f(\mathbf{x}^{\star}) \right) + 2L \|\mathbf{z}_{t-1} - \mathbf{x}^{\star}\|^{2}.$$

OT

Now, prove that $\Delta:=(\Phi(t+1)-\Phi(t))/(t+1)\leq 0$:

$$\Delta = t \left(f(\mathbf{y}_{t+1}) - f(\mathbf{y}_{t}) \right) + 2 \left(f(\mathbf{y}_{t+1}) - f(\mathbf{x}^{\star}) \right) + \frac{2L}{t+1} \left(\|\mathbf{z}_{t+1} - \mathbf{x}^{\star}\|^{2} - \|\mathbf{z}_{t} - \mathbf{x}^{\star}\|^{2} \right)$$

$$\stackrel{(2)}{=} t \left(f(\mathbf{y}_{t+1}) - f(\mathbf{y}_{t}) \right) + 2 \left(f(\mathbf{y}_{t+1}) - f(\mathbf{x}^{\star}) \right) + \frac{t+1}{2L} \|\mathbf{g}_{t}\|^{2} - 2\mathbf{g}_{t}^{\top}(\mathbf{z}_{t} - \mathbf{x}^{\star})$$

$$\stackrel{(1)}{\leq} t \left(f(\mathbf{x}_{t}) - f(\mathbf{y}_{t}) \right) + 2 \left(f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star}) \right) - \frac{1}{2L} \|\mathbf{g}_{t}\|^{2} - 2\mathbf{g}_{t}^{\top}(\mathbf{z}_{t} - \mathbf{x}^{\star})$$

$$\stackrel{(3)}{\leq} t \left(f(\mathbf{x}_{t}) - f(\mathbf{y}_{t}) \right) + 2 \left(f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star}) \right) - 2\mathbf{g}_{t}^{\top}(\mathbf{z}_{t} - \mathbf{x}^{\star})$$

$$\stackrel{(3)}{=} \mathbf{g}_{t}^{\top}((t+2)\mathbf{x}_{t} - t\mathbf{y}_{t} - 2\mathbf{z}_{t}) \stackrel{(\text{algo})}{=} \mathbf{g}_{t}^{\top}\mathbf{0} = 0. \quad \Box$$

Bibliography

- Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient descent for deep linear neural networks. *CoRR*, abs/1810.02281, 2018.
- Nikhil Bansal and Anupam Gupta. Potential-function proofs for first-order methods. CoRR, abs/1712.04581, 2017.
- 🔋 Ching-Pei Lee and Stephen Wright.

First-order algorithms converge faster than o(1/k) on convex problems. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 3754–3762, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Yurii Nesterov.

A method of solving a convex programming problem with convergence rate $o(1/k^2)$. Optimization for Machine Learning (CS-439-7(2)) 1002