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Trajectory Analysis

Even if the “landscape” (graph) of a nonconvex function has local minima, saddle
points, and flat parts, gradient descent may avoid them and still converge to a global
minimum.

For this, one needs a good starting point and some theoretical understanding of what
happens when we start there—this is trajectory analysis.

2018: trajectory analysis for training deep linear linear neural networks, under suitable
conditions [ACGH18].

Here: vastly simplified setting that allows us to show the main ideas (and limitations).
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Linear models with several outputs

Recall: Learning linear models

I n inputs x1, . . . ,xn, where each input xi ∈ Rd

I n outputs y1, . . . , yn ∈ R
I Hypothesis (after centering):

yi ≈ w>xi,

for a weight vector w = (w1, . . . , wd) ∈ Rd to be learned.

Now more than one output value:

I n outputs y1, . . . ,yn, where each output yi ∈ Rm

I Hypothesis:
yi ≈Wxi,

for a weight matrix W ∈ Rm×d to be learned.
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Minimizing the least squares error

Compute

W ? = argmin
W∈Rm×d

n∑
i=1

‖Wxi − yi‖2 .

I X ∈ Rd×n: matrix whose columns are the xi

I Y ∈ Rm×n: matrix whose columns are the yi

Then
W ? = argmin

W∈Rm×d

‖WX − Y ‖2F ,

where ‖A‖F =
√∑

i,j a
2
ij is the Frobenius norm of a matrix A.

Frobenius norm of A = Euclidean norm of vec(A) (“flattening” of A)
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Minimizing the least squares error II

W ? = argmin
W∈Rm×d

‖WX − Y ‖2F

is the global minimum of a convex quadratic function f(W ).

To find W ?, solve ∇f(W ) = 0 (system of linear equations).

⇔ training a linear neural network with one layer under least squares error.
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Deep linear neural networks
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x 7→ y = W3W2W1x

Not more expressive:

x 7→ y = W3W2W1x ⇔ x 7→ y = Wx, W := W3W2W1.
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Training deep linear neural networks
With ` layers:

W ? = argmin
W1,W2,...,W`

‖W`W`−1 · · ·W1X − Y ‖2F ,

Nonconvex function for ` > 1.

Simple playground in which we can try to understand why training deep neural
networks with gradient descent works.

Here: all matrices are 1× 1, Wi = xi, X = 1, Y = 1, ` = d ⇒ f : Rd → R,

f(x) :=
1

2

(
d∏

k=1

xk − 1

)2

.

Toy example in our simple playground.

But analysis of gradient descent on f has similar ingredients as the one on general
deep linear neural networks [ACGH18].
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A simple nonconvex function

As d is fixed, abbreviate
∏d
k=1 xk by

∏
k xk: f(x) =

1

2

(∏
k

xk − 1

)2
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The gradient

∇f(x) =

(∏
k

xk − 1

)∏
k 6=1

xk, . . . ,
∏
k 6=d

xk

 .

Critical points (∇f(x) = 0):
I
∏
k xk = 1 (global

minima)
I d = 2: the hyperbola
{(x1, x2) : x1x2 = 1}

I at least two of the xk are
zero (saddle points)

I d = 2: the origin
(x1, x2) = (0, 0)
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Negative gradient directions (followed by gradient descent)

Difficult to avoid convergence to a global minimum, but it is possible (Exercise 40).
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Convergence analysis: Overview
Want to show that for any d > 1, and from anywhere in X = {x : x > 0,

∏
k xk ≤ 1},

gradient descent will converge to a global minimum.

f is not smooth over X. We show that f is smooth along the trajectory of gradient
descent for suitable L, so that we get sufficient decrease

f(xt+1) ≤ f(xt)−
1

2L
‖∇f(xt)‖2, t ≥ 0.

Then, we cannot converge to a saddle point: all these have (at least two) zero entries
and therefore function value 1/2. But for starting point x0 ∈ X, we have f(x0) < 1/2,
so we can never reach a saddle while decreasing f .

Doesn’t this imply converge to a global mimimum? No!

I Sublevel sets are unbounded, so we could in principle run off to infinity.

I Other bad things might happen (we haven’t characterized what can go wrong).
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Convergence analysis: Overview II

For x > 0,
∏
k xk ≥ 1, we also get convergence (Exercise 39).

⇒ convergence from anywhere in the interior of the positive orthant {x : x > 0}.

But there are also starting points from which gradient descent will not converge to a
global minimum (Exercise 40).
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Main tool: Balanced iterates
Definition

Let x > 0 (componentwise), and let c ≥ 1 be a real number. x is called c-balanced if
xi ≤ cxj for all 1 ≤ i, j ≤ d.

Any initial iterate x0 > 0 is c-balanced for some (possibly large) c.

Lemma

Let x > 0 be c-balanced with
∏
k xk ≤ 1. Then for any stepsize γ > 0,

x′ := x− γ∇f(x) satisfies x′ ≥ x (componentwise) and is also c-balanced.

Proof.

∆ := −γ(
∏
k xk − 1)(

∏
k xk) ≥ 0. ∇f(x) = (

∏
k xk − 1)

(∏
k 6=1 xk, . . . ,

∏
k 6=d xk

)
.

Gradient descent step:

x′k = xk +
∆

xk
≥ xk, k = 1, . . . , d.

For i, j, we have xi ≤ cxj and xj ≤ cxi
(⇔ 1/xi ≤ c/xj). We therefore get

x′i = xi +
∆

xi
≤ cxj +

∆c

xj
= cx′j .
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Bounded Hessians along the trajectory
Compute ∇2f(x):

∇2f(x)ij is the j-th partial derivative of the i-th entry of ∇f(x).

(∇f)i =

(∏
k

xk − 1

)∏
k 6=i

xk

∇2f(x)ij =



∏
k 6=i

xk

2

, j = i

2
∏
k 6=i

xk
∏
k 6=j

xk −
∏
k 6=i,j

xk, j 6= i

Need to bound
∏
k 6=i xk,

∏
k 6=j xk,

∏
k 6=i,j xk!
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Bounded Hessians along the trajectory II
Lemma

Suppose that x > 0 is c-balanced. Then for any I ⊆ {1, . . . , d}, we have

(
1

c

)|I|(∏
k

xk

)1−|I|/d

≤
∏
k/∈I

xk ≤ c|I|

(∏
k

xk

)1−|I|/d

.

Proof.

For any i, we have xdi ≥ (1/c)d
∏
k xk by balancedness, hence xi ≥ (1/c)(

∏
k xk)

1/d.It
follows that

∏
k/∈I

xk =

∏
k xk∏
i∈I xi

≤
∏
k xk

(1/c)|I|(
∏
k xk)

|I|/d = c|I|

(∏
k

xk

)1−|I|/d

.

The lower bound follows in the same way from xdi ≤ cd
∏
k xk.
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Bounded Hessians along the trajectory III

Lemma

Let x > 0 be c-balanced with
∏
k xk ≤ 1. Then∥∥∇2f(x)
∥∥ ≤ ∥∥∇2f(x)

∥∥
F
≤ 3dc2.

where ‖A‖F is the Frobenius norm and ‖A‖ the spectral norm.

Proof.

‖A‖ ≤ ‖A‖F : Exercise 41. Now use previous lemma and
∏
k xk ≤ 1:∣∣∇2f(x)ii

∣∣ = |(
∏
k 6=i

xk)
2| ≤ c2

∣∣∇2f(x)ij
∣∣ ≤ |2∏

k 6=i
xk
∏
k 6=j

xk|+ |
∏
k 6=i,j

xk| ≤ 3c2.

Hence,
∥∥∇2f(x)

∥∥2

F
≤ 9d2c4. Taking square roots, the statement follows.
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Smoothness along the trajectory
Lemma

Let x > 0 be c-balanced with
∏
k xk < 1, L = 3dc2. Let γ := 1/L. Then for all

0 ≤ ν ≤ γ,
x′ := x− ν∇f(x) ≥ x

is c-balanced with
∏
k x
′
k ≤ 1, and f is smooth with parameter L over the line

segment connecting x and x− γ∇f(x).

Proof.
I x′ ≥ x > 0 is c-balanced by Lemma 6.5.

I ∇f(x) 6= 0 (due to x′ > 0,
∏
k xk < 1, we can’t be at a critical point).

I No overshooting: we can’t reach
∏
k x
′
k = 1 (global minimum) for ν < γ, as f is

smooth with parameter L between x and x′ (using previous bound on Hessians in
Lemma 6.1).

I By continutity,
∏
k x
′
k ≤ 1 for all ν ≤ γ.

I f is smooth with parameter L between x and x′ for ν = γ.
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Convergence

Theorem

Let c ≥ 1 and δ > 0 such that x0 > 0 is c-balanced with δ ≤
∏
k(x0)k < 1. Choosing

stepsize

γ =
1

3dc2
,

gradient descent satisfies

f(xT ) ≤
(

1− δ2

3c4

)T
f(x0), T ≥ 0.

I Error converges to 0 exponentially fast.

I Exercise 42: iterates themselves converge (to an optimal solution).
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Convergence: Proof
Proof.

I For t ≥ 0, f is smooth between xt and xt+1 with parameter L = 3dc2.

I Sufficient decrease:

f(xt+1) ≤ f(xt)−
1

6dc2
‖∇f(xt)‖2 .

For every c-balanced x with δ ≤
∏
k xk ≤ 1, ‖∇f(x)‖2 equals

2f(x)

d∑
i=1

∏
k 6=i

xk

2

≥ 2f(x)
d

c2

(∏
k

xk

)2−2/d

≥ 2f(x)
d

c2

(∏
k

xk

)2

≥ 2f(x)
d

c2
δ2.

I Hence, f(xt+1) ≤ f(xt)−
1

6dc2
2f(xt)

d

c2
δ2 = f(xt)

(
1− δ2

3c4

)
.
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Discussion

Fast convergence as for strongly convex functions!

But there is a catch. . .

Consider starting point x0 = (1/2, . . . , 1/2).

δ ≤
∏
k(x0)k = 2−d.

Decrease in function value by a factor of(
1− 1

3 · 4d

)
,

per step.

Need T ≈ 4d to reduce the initial error by a constant factor not depending on d.

Problem: gradients are exponentially small in the beginning, extremely slow progress.

For polynomial runtime, must start at distance O(1/
√
d) from optimality.
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Chapter 7

Accelerated Gradient Descent
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Smooth convex functions: less than O(1/ε) steps?

Fixing L and R = ‖x0 − x?‖, the error of gradient descent after T steps is O(1/T ).

Lee and Wright [LW19]:

I A better upper bound of o(1/T ) holds.

I A lower bound of Ω(1/T 1+δ) also holds, for any fixed δ > 0.

So, gradient descent is slightly faster on smooth functions than what we proved, but
not significantly.
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First-order methods: less than O(1/ε) steps?
Maybe gradient descent is not the best possible algorithm?

After all, it is just some algorithm that uses gradient information.

First-order method:

I An algorithm that gains access to f only via an oracle that is able to return values
of f and ∇f at arbitrary points.

I Gradient descent is a specific first-order method.

What is the best first-order method for smooth convex functions, the one with the
smallest upper bound on the number of oracle calls in the worst case?

Nemirovski and Yudin 1979 [NY83]: every first-order method needs in the worst case
Ω(1/

√
ε) steps (gradient evaluations) in order to achieve an additive error of ε on

smooth functions.

There is a gap between O(1/ε) (gradient descent) and the lower bound!
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Acceleration for smooth convex functions: O(1/
√
ε) steps

Nesterov 1983 [Nes83, Nes18]: There is a first-order method that needs only
O(1/

√
ε) steps on smooth convex functions, and by the lower bound of Nemirovski

and Yudin, this is a best possible algorithm!

The algorithm is known as (Nesterov’s) accelerated gradient descent.

A number of (similar) optimal algorithms with other proofs of the O(1/
√
ε) upper

bound are known, but there is no well-established “simplest proof”.

Here: a recent proof based on potential functions [BG17]. Proof is simple but not very
instructive (it works, but it’s not clear why).
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Nesterov’s accelerated gradient descent
Let f : Rd → R be convex, differentiable, and smooth with parameter L. Choose
z0 = y0 = x0 arbitrary. For t ≥ 0, set

yt+1 := xt −
1

L
∇f(xt)

zt+1 := zt −
t+ 1

2L
∇f(xt)

xt+1 :=
t+ 1

t+ 3
yt+1 +

2

t+ 3
zt+1.

I Perform a “smooth step” from xt to yt+1.

I Perform a more aggressive step from zt to zt+1.

I Next iterate xt+1 is a weighted average of yt+1 and zt+1, where we compensate
for the more aggressive step by giving zt+1 a relatively low weight.

Why should this work??
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Nesterov’s accelerated gradient descent: Error bound

Theorem

Let f : Rd → R be convex and differentiable with a global minimum x?; furthermore,
suppose that f is smooth with parameter L. Accelerated gradient descent yields

f(yT )− f(x?) ≤ 2L ‖z0 − x?‖2

T (T + 1)
, T > 0.

To reach error at most ε, accelerated gradient descent therefore only needs O(1/
√
ε)

steps instead of O(1/ε).

Recall the bound for gradient descent:

f(xT )− f(x?) ≤ L

2T
‖x0 − x?‖2, T > 0.
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Nesterov’s accelerated gradient descent: The potential function

Idea: assign a potential Φ(t) to each time t and show that Φ(t+ 1) ≤ Φ(t).

Out of the blue: let’s define the potential as

Φ(t) := t(t+ 1) (f(yt)− f(x?)) + 2L ‖zt − x?‖2 .

If we can show that the potential always decreases, we get

T (T + 1) (f(yT )− f(x?)) + 2L ‖zT − x?‖2︸ ︷︷ ︸
Φ(T )

≤ 2L ‖z0 − x?‖2︸ ︷︷ ︸
Φ(0)

.

Rewriting this, we get the claimed error bound.
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Potential function decrease: Three Ingredients

Sufficient decrease for the smooth step from xt to yt+1:

f(yt+1) ≤ f(xt)−
1

2L
‖∇f(xt)‖2; (1)

Vanilla analysis for the more aggressive step from zt to zt+1: (γ = t+1
2L , gt = ∇f(xt)):

g>t (zt − x?) =
t+ 1

4L
‖gt‖2 +

L

t+ 1

(
‖zt − x?‖2 − ‖zt+1 − x?‖2

)
; (2)

Convexity (graph of f is above the tangent hyperplane at xt):

f(xt)− f(w) ≤ g>t (xt −w), w ∈ Rd. (3)
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Potential function decrease: Proof
By definition of potential,

Φ(t+ 1) = t(t+ 1) (f(yt+1)− f(x?)) + 2(t+ 1) (f(yt+1)− f(x?)) + 2L ‖zt+1 − x?‖2 ,
Φ(t) = t(t+ 1) (f(yt )− f(x?)) + 2L ‖zt − x?‖2 .

Now, prove that ∆ := (Φ(t+ 1)− Φ(t))/(t+ 1) ≤ 0:

∆ = t (f(yt+1)− f(yt)) + 2 (f(yt+1)− f(x?)) +
2L

t+ 1

(
‖zt+1 − x?‖2 − ‖zt − x?‖2

)
(2)
= t (f(yt+1)− f(yt)) + 2 (f(yt+1)− f(x?)) +

t+ 1

2L
‖gt‖2 − 2g>t (zt − x?)

(1)

≤ t (f(xt)− f(yt)) + 2 (f(xt)− f(x?))− 1

2L
‖gt‖2 − 2g>t (zt − x?)

≤ t (f(xt)− f(yt)) + 2 (f(xt)− f(x?))− 2g>t (zt − x?)

(3)

≤ tg>t (xt − yt) + 2g>t (xt − x?)− 2g>t (zt − x?)

= g>t ((t+ 2)xt − tyt − 2zt)
(algo)

= g>t 0 = 0.
EPFL Optimization for Machine Learning CS-439 29/30



Bibliography

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu.
A convergence analysis of gradient descent for deep linear neural networks.
CoRR, abs/1810.02281, 2018.

Nikhil Bansal and Anupam Gupta.
Potential-function proofs for first-order methods.
CoRR, abs/1712.04581, 2017.

Ching-Pei Lee and Stephen Wright.
First-order algorithms converge faster than o(1/k) on convex problems.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 3754–3762, Long Beach, California, USA,
09–15 Jun 2019. PMLR.

Yurii Nesterov.
A method of solving a convex programming problem with convergence rate
o(1/k2).
Soviet Math. Dokl., 27(2), 1983.

Yurii Nesterov.
Lectures on Convex Optimization, volume 137 of Springer Optimization and Its
Applications.
Springer, second edition, 2018.

Arkady. S. Nemirovsky and D. B. Yudin.
Problem complexity and method efficiency in optimization.
Wiley, 1983.

EPFL Optimization for Machine Learning CS-439 30/30


