forked from Newmu/Theano-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_net.py
48 lines (36 loc) · 1.3 KB
/
3_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import theano
from theano import tensor as T
import numpy as np
from load import mnist
from foxhound.utils.vis import grayscale_grid_vis, unit_scale
from scipy.misc import imsave
def floatX(X):
return np.asarray(X, dtype=theano.config.floatX)
def init_weights(shape):
return theano.shared(floatX(np.random.randn(*shape) * 0.01))
def sgd(cost, params, lr=0.05):
grads = T.grad(cost=cost, wrt=params)
updates = []
for p, g in zip(params, grads):
updates.append([p, p - g * lr])
return updates
def model(X, w_h, w_o):
h = T.nnet.sigmoid(T.dot(X, w_h))
pyx = T.nnet.softmax(T.dot(h, w_o))
return pyx
trX, teX, trY, teY = mnist(onehot=True)
X = T.fmatrix()
Y = T.fmatrix()
w_h = init_weights((784, 625))
w_o = init_weights((625, 10))
py_x = model(X, w_h, w_o)
y_x = T.argmax(py_x, axis=1)
cost = T.mean(T.nnet.categorical_crossentropy(py_x, Y))
params = [w_h, w_o]
updates = sgd(cost, params)
train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True)
predict = theano.function(inputs=[X], outputs=y_x, allow_input_downcast=True)
for i in range(100):
for start, end in zip(range(0, len(trX), 128), range(128, len(trX), 128)):
cost = train(trX[start:end], trY[start:end])
print np.mean(np.argmax(teY, axis=1) == predict(teX))