You can install from Github:
source("https://install-github.me/dreamRs/r2d3maps")
# or with devtools:
devtools::install_github("dreamRs/r2d3maps")
Create D3 maps from sf
objects, try it with NaturalEarth map data from rnaturalearth
:
library( r2d3maps )
library( rnaturalearth )
### Japan
japan <- ne_states(country = "japan", returnclass = "sf")
d3_map(shape = japan) %>%
add_labs(title = "Japan")
### South America
south_america <- ne_countries(continent = "south america", returnclass = "sf")
d3_map(shape = south_america) %>%
add_labs(title = "South America")
There is two way to plot a continuous variable: by defining intervals or using a gradient.
# Packages
library( r2d3maps )
library( sf )
library( CARTElette ) # devtools::install_github("antuki/CARTElette/CARTElette@RPackage")
library( dplyr )
library( rmapshaper )
# map data
dept <- loadMap(nivsupra = "DEP") # shapes
dept <- st_transform(dept, crs = 4326) # changing coordinates
dept <- ms_simplify(dept) # simplify shapes
# add population data
data("pop_fr", package = "r2d3maps")
dept <- left_join(
x = dept,
y = pop_fr,
by = c("DEP" = "code_departement")
)
# draw map
d3_map(dept) %>%
add_continuous_breaks(var = "population_totale", na_color = "#b8b8b8") %>%
add_legend(d3_format = ".2s") %>%
add_tooltip(value = "{nom} : {population_totale}")
With a gradient:
d3_map(dept) %>%
add_continuous_gradient(var = "population_totale") %>%
add_legend(d3_format = ".2s") %>%
add_tooltip(value = "{nom} : {population_totale}")
You can also use a diverging colour gradient:
library( r2d3maps )
library( rnaturalearth )
library( dplyr )
# shapes
ireland <- ne_states(country = "ireland", returnclass = "sf")
# add data
data("pop_irl")
ireland <- left_join(
x = ireland,
y = pop_irl
)
# draw map
d3_map(shape = ireland, stroke_col = "#585858") %>%
add_tooltip(value = "{woe_name}: {changes_percentage}%") %>%
add_continuous_gradient2(var = "changes_percentage", range = c(-9, 9)) %>%
add_legend(title = "Changes in population (2011-2016)", suffix = "%") %>%
add_labs(
title = "Ireland",
caption = "Data from NaturalEarth"
)
Plot categorical variables, you can use a color palette or manual values:
# map data
fr_dept <- ne_states(country = "france", returnclass = "sf")
fr_dept <- fr_dept[fr_dept$type_en %in% "Metropolitan department", ]
# firstnames data
data("prenoms_fr", package = "r2d3maps")
prenoms_fr_89 <- prenoms_fr %>%
filter(annais == 1989, sexe == 2) %>%
group_by(preusuel) %>%
mutate(n = n()) %>%
ungroup() %>%
mutate(prenom = if_else(n < 2, "AUTRE", preusuel))
fr_dept <- left_join(
x = fr_dept,
y = prenoms_fr_89,
by = "adm1_code"
)
# draw map
d3_map(shape = fr_dept) %>%
add_discrete_scale(
var = "prenom", palette = "Set2",
labels_order = c(setdiff(unique(na.omit(fr_dept$prenom)), "AUTRE"), "AUTRE")
) %>%
add_tooltip(value = "<b>{name}</b>: {prenom}", .na = NULL) %>%
add_legend(title = "Prénoms") %>%
add_labs(
title = "Prénoms féminins les plus attribués en 1989",
caption = "Data: Insee"
)