forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
speed_benchmark.cc
211 lines (198 loc) · 7.43 KB
/
speed_benchmark.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include "caffe2/core/init.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#ifdef CAFFE2_OPTIMIZER
#include "caffe2/opt/optimizer.h"
#endif
#include "caffe2/proto/caffe2.pb.h"
#include "caffe2/utils/proto_utils.h"
#include "caffe2/utils/string_utils.h"
CAFFE2_DEFINE_string(net, "", "The given net to benchmark.");
CAFFE2_DEFINE_string(
init_net,
"",
"The given net to initialize any parameters.");
CAFFE2_DEFINE_string(
input,
"",
"Input that is needed for running the network. If "
"multiple input needed, use comma separated string.");
CAFFE2_DEFINE_string(
input_file,
"",
"Input file that contain the serialized protobuf for "
"the input blobs. If multiple input needed, use comma "
"separated string. Must have the same number of items "
"as input does.");
CAFFE2_DEFINE_string(
input_dims,
"",
"Alternate to input_files, if all inputs are simple "
"float TensorCPUs, specify the dimension using comma "
"separated numbers. If multiple input needed, use "
"semicolon to separate the dimension of different "
"tensors.");
CAFFE2_DEFINE_string(input_type, "", "Input type (uint8_t/float)");
CAFFE2_DEFINE_string(
output,
"",
"Output that should be dumped after the execution "
"finishes. If multiple outputs are needed, use comma "
"separated string. If you want to dump everything, pass "
"'*' as the output value.");
CAFFE2_DEFINE_string(
output_folder,
"",
"The folder that the output should be written to. This "
"folder must already exist in the file system.");
CAFFE2_DEFINE_int(warmup, 0, "The number of iterations to warm up.");
CAFFE2_DEFINE_int(iter, 10, "The number of iterations to run.");
CAFFE2_DEFINE_int(opt, 0, "The level of optimization to run automatically.");
CAFFE2_DEFINE_bool(
run_individual,
false,
"Whether to benchmark individual operators.");
CAFFE2_DEFINE_bool(force_engine, false, "Force engine field for all operators");
CAFFE2_DEFINE_string(engine, "", "Forced engine field value");
CAFFE2_DEFINE_bool(force_algo, false, "Force algo arg for all operators");
CAFFE2_DEFINE_string(algo, "", "Forced algo arg value");
using std::string;
using std::unique_ptr;
using std::vector;
int main(int argc, char** argv) {
caffe2::GlobalInit(&argc, &argv);
unique_ptr<caffe2::Workspace> workspace(new caffe2::Workspace());
// Run initialization network.
caffe2::NetDef net_def;
CAFFE_ENFORCE(ReadProtoFromFile(caffe2::FLAGS_init_net, &net_def));
CAFFE_ENFORCE(workspace->RunNetOnce(net_def));
// Load input.
if (caffe2::FLAGS_input.size()) {
vector<string> input_names = caffe2::split(',', caffe2::FLAGS_input);
if (caffe2::FLAGS_input_file.size()) {
vector<string> input_files = caffe2::split(',', caffe2::FLAGS_input_file);
CAFFE_ENFORCE_EQ(
input_names.size(),
input_files.size(),
"Input name and file should have the same number.");
for (int i = 0; i < input_names.size(); ++i) {
caffe2::BlobProto blob_proto;
CAFFE_ENFORCE(caffe2::ReadProtoFromFile(input_files[i], &blob_proto));
workspace->CreateBlob(input_names[i])->Deserialize(blob_proto);
}
} else if (caffe2::FLAGS_input_dims.size() || caffe2::FLAGS_input_type.size()) {
CAFFE_ENFORCE_GE(
caffe2::FLAGS_input_dims.size(),
0,
"Input dims must be specified when input tensors are used.");
CAFFE_ENFORCE_GE(
caffe2::FLAGS_input_type.size(),
0,
"Input type must be specified when input tensors are used.");
vector<string> input_dims_list =
caffe2::split(';', caffe2::FLAGS_input_dims);
CAFFE_ENFORCE_EQ(
input_names.size(),
input_dims_list.size(),
"Input name and dims should have the same number of items.");
vector<string> input_type_list =
caffe2::split(';', caffe2::FLAGS_input_type);
CAFFE_ENFORCE_EQ(
input_names.size(),
input_type_list.size(),
"Input name and type should have the same number of items.");
for (size_t i = 0; i < input_names.size(); ++i) {
vector<string> input_dims_str = caffe2::split(',', input_dims_list[i]);
vector<int> input_dims;
for (const string& s : input_dims_str) {
input_dims.push_back(caffe2::stoi(s));
}
caffe2::Blob* blob = workspace->GetBlob(input_names[i]);
if (blob == nullptr) {
blob = workspace->CreateBlob(input_names[i]);
}
caffe2::TensorCPU* tensor = blob->GetMutable<caffe2::TensorCPU>();
CHECK_NOTNULL(tensor);
tensor->Resize(input_dims);
if (input_type_list[i] == "uint8_t") {
tensor->mutable_data<uint8_t>();
} else if (input_type_list[i] == "float") {
tensor->mutable_data<float>();
} else {
CAFFE_THROW("Unsupported input type: ", input_type_list[i]);
}
}
} else {
CAFFE_THROW(
"You requested input tensors, but neither input_file nor "
"input_dims is set.");
}
}
// Run main network.
CAFFE_ENFORCE(ReadProtoFromFile(caffe2::FLAGS_net, &net_def));
if (!net_def.has_name()) {
net_def.set_name("benchmark");
}
// force changing engine and algo
if (caffe2::FLAGS_force_engine) {
LOG(INFO) << "force engine be: " << caffe2::FLAGS_engine;
for (const auto& op : net_def.op()) {
const_cast<caffe2::OperatorDef*>(&op)->set_engine(caffe2::FLAGS_engine);
}
}
if (caffe2::FLAGS_force_algo) {
LOG(INFO) << "force algo be: " << caffe2::FLAGS_algo;
for (const auto& op : net_def.op()) {
caffe2::GetMutableArgument(
"algo", true, const_cast<caffe2::OperatorDef*>(&op))
->set_s(caffe2::FLAGS_algo);
}
}
if (caffe2::FLAGS_opt) {
#ifdef CAFFE2_OPTIMIZER
net_def = caffe2::opt::optimize(net_def, workspace.get(), caffe2::FLAGS_opt);
#else
LOG(WARNING) << "Caffe2 not compiled with optimization passes.";
#endif
}
caffe2::NetBase* net = workspace->CreateNet(net_def);
CHECK_NOTNULL(net);
CAFFE_ENFORCE(net->Run());
net->TEST_Benchmark(
caffe2::FLAGS_warmup, caffe2::FLAGS_iter, caffe2::FLAGS_run_individual);
string output_prefix = caffe2::FLAGS_output_folder.size()
? caffe2::FLAGS_output_folder + "/"
: "";
if (caffe2::FLAGS_output.size()) {
vector<string> output_names = caffe2::split(',', caffe2::FLAGS_output);
if (caffe2::FLAGS_output == "*") {
output_names = workspace->Blobs();
}
for (const string& name : output_names) {
CAFFE_ENFORCE(
workspace->HasBlob(name),
"You requested a non-existing blob: ",
name);
string serialized = workspace->GetBlob(name)->Serialize(name);
string output_filename = output_prefix + name;
caffe2::WriteStringToFile(serialized, output_filename.c_str());
}
}
return 0;
}