-
Notifications
You must be signed in to change notification settings - Fork 32
/
History_detailB.py
168 lines (150 loc) · 7.36 KB
/
History_detailB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import pandas as pd
import datetime
def order_hist0(CreateGroupList):
order = pd.read_csv('./B/jdata_user_order.csv', parse_dates=['o_date'])
sku = pd.read_csv('./B/jdata_sku_basic_info.csv', )
order = pd.merge(order, sku, on='sku_id', how='left')
target_order = order[(order.cate == 101) | (order.cate == 30)].reset_index(drop=True)
first_day = datetime.datetime.strptime('2016-08-31 00:00:00', '%Y-%m-%d %H:%M:%S')
target_order['o_day_series'] = (target_order['o_date'] - first_day).apply(lambda x: x.days)
basic_info = pd.read_csv('./B/jdata_user_basic_info.csv')
target_order = target_order.sort_values(by=['user_id','o_day_series'], ascending=False).reset_index(drop=True)
alld = []
for CG in CreateGroupList:
CreateGroup = CG
t = target_order[target_order.o_day_series < CreateGroup]
features =[]
for i in range(10):
t2 = t[['user_id','o_day_series']].groupby(['user_id']).shift(-i)
t2.columns = t2.columns + '_{}'.format(i)
features.append(t2.columns[0])
t = pd.concat([t,t2],axis=1)
x = t.drop_duplicates(subset=['user_id'])
x = x[['user_id'] + features]
x['CreateGroup'] = CreateGroup
alld.append(x)
return pd.concat(alld)
def all_order_hist(CreateGroupList,num,f):
order = pd.read_csv('./B/jdata_user_order.csv', parse_dates=['o_date'])
sku = pd.read_csv('./B/jdata_sku_basic_info.csv', )
order = pd.merge(order, sku, on='sku_id', how='left')
target_order = order.reset_index(drop=True)
first_day = datetime.datetime.strptime('2016-08-31 00:00:00', '%Y-%m-%d %H:%M:%S')
target_order['o_day_series'] = (target_order['o_date'] - first_day).apply(lambda x: x.days)
target_order = target_order.sort_values(by=['user_id','o_day_series'], ascending=False).reset_index(drop=True)
alld = []
for CG in CreateGroupList:
CreateGroup = CG
t = target_order[target_order.o_day_series < CreateGroup]
features =[]
for i in range(num):
t2 = t[['user_id',f]].groupby(['user_id']).shift(-i)
t2.columns = t2.columns + '_all_{}'.format(i)
features.append(t2.columns[0])
t = pd.concat([t,t2],axis=1)
x = t.drop_duplicates(subset=['user_id'])
x = x[['user_id'] + features]
x['CreateGroup'] = CreateGroup
alld.append(x)
df = pd.concat(alld).reset_index(drop=True)
# print(np.unique(df.CreateGroup))
return df
def order_price_total_hist(CreateGroupList,num):
order = pd.read_csv('./B/jdata_user_order.csv', parse_dates=['o_date'])
sku = pd.read_csv('./B/jdata_sku_basic_info.csv', )
order = pd.merge(order, sku, on='sku_id', how='left')
order['price_total'] = order['o_sku_num'] * order['price']
target_order = order[(order.cate == 101) | (order.cate == 30)].reset_index(drop=True)
first_day = datetime.datetime.strptime('2016-08-31 00:00:00', '%Y-%m-%d %H:%M:%S')
target_order['o_day_series'] = (target_order['o_date'] - first_day).apply(lambda x: x.days)
target_order = target_order.sort_values(by=['user_id','o_day_series'], ascending=False).reset_index(drop=True)
alld = []
for CG in CreateGroupList:
CreateGroup = CG
t = target_order[target_order.o_day_series < CreateGroup]
features =[]
for i in range(num):
t2 = t[['user_id','price_total']].groupby(['user_id']).shift(-i)
t2.columns = t2.columns + '_{}'.format(i)
features.append(t2.columns[0])
t = pd.concat([t,t2],axis=1)
x = t.drop_duplicates(subset=['user_id'])
x = x[['user_id'] + features]
x['CreateGroup'] = CreateGroup
alld.append(x)
df = pd.concat(alld).reset_index(drop=True)
return df
def order_hist(CreateGroupList,num,f):
order = pd.read_csv('./B/jdata_user_order.csv', parse_dates=['o_date'])
sku = pd.read_csv('./B/jdata_sku_basic_info.csv', )
order = pd.merge(order, sku, on='sku_id', how='left')
target_order = order[(order.cate == 101) | (order.cate == 30)].reset_index(drop=True)
first_day = datetime.datetime.strptime('2016-08-31 00:00:00', '%Y-%m-%d %H:%M:%S')
target_order['o_day_series'] = (target_order['o_date'] - first_day).apply(lambda x: x.days)
target_order = target_order.sort_values(by=['user_id','o_day_series'], ascending=False).reset_index(drop=True)
alld = []
for CG in CreateGroupList:
CreateGroup = CG
t = target_order[target_order.o_day_series < CreateGroup]
features =[]
for i in range(num):
t2 = t[['user_id',f]].groupby(['user_id']).shift(-i)
t2.columns = t2.columns + '_{}'.format(i)
features.append(t2.columns[0])
t = pd.concat([t,t2],axis=1)
x = t.drop_duplicates(subset=['user_id'])
x = x[['user_id'] + features]
x['CreateGroup'] = CreateGroup
alld.append(x)
df = pd.concat(alld).reset_index(drop=True)
# print(np.unique(df.CreateGroup))
return df
def action_hist(CreateGroupList,num,f):
action = pd.read_csv('./B/jdata_user_action.csv', parse_dates=['a_date'])
sku = pd.read_csv('./B/jdata_sku_basic_info.csv', )
action = pd.merge(action, sku, on='sku_id', how='left')
target_action = action[(action.cate == 101) | (action.cate == 30)].reset_index(drop=True)
first_day = datetime.datetime.strptime('2016-08-31 00:00:00', '%Y-%m-%d %H:%M:%S')
target_action['a_day_series'] = (target_action['a_date'] - first_day).apply(lambda x: x.days)
target_action = target_action.sort_values(by=['user_id','a_day_series'], ascending=False).reset_index(drop=True)
alld = []
for CG in CreateGroupList:
CreateGroup = CG
t = target_action[target_action.a_day_series < CreateGroup]
features =[]
for i in range(num):
t2 = t[['user_id',f]].groupby(['user_id']).shift(-i)
t2.columns = t2.columns + '_{}'.format(i)
features.append(t2.columns[0])
t = pd.concat([t,t2],axis=1)
x = t.drop_duplicates(subset=['user_id'])
x = x[['user_id'] + features]
x['CreateGroup'] = CreateGroup
alld.append(x)
df = pd.concat(alld).reset_index(drop=True)
return df
def all_action_hist(CreateGroupList,num,f):
action = pd.read_csv('./B/jdata_user_action.csv', parse_dates=['a_date'])
sku = pd.read_csv('./B/jdata_sku_basic_info.csv', )
action = pd.merge(action, sku, on='sku_id', how='left')
target_action = action.reset_index(drop=True)
first_day = datetime.datetime.strptime('2016-08-31 00:00:00', '%Y-%m-%d %H:%M:%S')
target_action['a_day_series'] = (target_action['a_date'] - first_day).apply(lambda x: x.days)
target_action = target_action.sort_values(by=['user_id','a_day_series'], ascending=False).reset_index(drop=True)
alld = []
for CG in CreateGroupList:
CreateGroup = CG
t = target_action[target_action.a_day_series < CreateGroup]
features =[]
for i in range(num):
t2 = t[['user_id',f]].groupby(['user_id']).shift(-i)
t2.columns = t2.columns + '_all_{}'.format(i)
features.append(t2.columns[0])
t = pd.concat([t,t2],axis=1)
x = t.drop_duplicates(subset=['user_id'])
x = x[['user_id'] + features]
x['CreateGroup'] = CreateGroup
alld.append(x)
df = pd.concat(alld).reset_index(drop=True)
return df