forked from juanjosegarciaripoll/tensor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsnapps.f
647 lines (647 loc) · 22.8 KB
/
snapps.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
c-----------------------------------------------------------------------
c\BeginDoc
c
c\Name: snapps
c
c\Description:
c Given the Arnoldi factorization
c
c A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
c
c apply NP implicit shifts resulting in
c
c A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
c
c where Q is an orthogonal matrix which is the product of rotations
c and reflections resulting from the NP bulge chage sweeps.
c The updated Arnoldi factorization becomes:
c
c A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
c
c\Usage:
c call snapps
c ( N, KEV, NP, SHIFTR, SHIFTI, V, LDV, H, LDH, RESID, Q, LDQ,
c WORKL, WORKD )
c
c\Arguments
c N Integer. (INPUT)
c Problem size, i.e. size of matrix A.
c
c KEV Integer. (INPUT/OUTPUT)
c KEV+NP is the size of the input matrix H.
c KEV is the size of the updated matrix HNEW. KEV is only
c updated on ouput when fewer than NP shifts are applied in
c order to keep the conjugate pair together.
c
c NP Integer. (INPUT)
c Number of implicit shifts to be applied.
c
c SHIFTR, Real array of length NP. (INPUT)
c SHIFTI Real and imaginary part of the shifts to be applied.
c Upon, entry to snapps, the shifts must be sorted so that the
c conjugate pairs are in consecutive locations.
c
c V Real N by (KEV+NP) array. (INPUT/OUTPUT)
c On INPUT, V contains the current KEV+NP Arnoldi vectors.
c On OUTPUT, V contains the updated KEV Arnoldi vectors
c in the first KEV columns of V.
c
c LDV Integer. (INPUT)
c Leading dimension of V exactly as declared in the calling
c program.
c
c H Real (KEV+NP) by (KEV+NP) array. (INPUT/OUTPUT)
c On INPUT, H contains the current KEV+NP by KEV+NP upper
c Hessenber matrix of the Arnoldi factorization.
c On OUTPUT, H contains the updated KEV by KEV upper Hessenberg
c matrix in the KEV leading submatrix.
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c RESID Real array of length N. (INPUT/OUTPUT)
c On INPUT, RESID contains the the residual vector r_{k+p}.
c On OUTPUT, RESID is the update residual vector rnew_{k}
c in the first KEV locations.
c
c Q Real KEV+NP by KEV+NP work array. (WORKSPACE)
c Work array used to accumulate the rotations and reflections
c during the bulge chase sweep.
c
c LDQ Integer. (INPUT)
c Leading dimension of Q exactly as declared in the calling
c program.
c
c WORKL Real work array of length (KEV+NP). (WORKSPACE)
c Private (replicated) array on each PE or array allocated on
c the front end.
c
c WORKD Real work array of length 2*N. (WORKSPACE)
c Distributed array used in the application of the accumulated
c orthogonal matrix Q.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx real
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c
c\Routines called:
c ivout ARPACK utility routine that prints integers.
c arscnd ARPACK utility routine for timing.
c smout ARPACK utility routine that prints matrices.
c svout ARPACK utility routine that prints vectors.
c slabad LAPACK routine that computes machine constants.
c slacpy LAPACK matrix copy routine.
c slamch LAPACK routine that determines machine constants.
c slanhs LAPACK routine that computes various norms of a matrix.
c slapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c slarf LAPACK routine that applies Householder reflection to
c a matrix.
c slarfg LAPACK Householder reflection construction routine.
c slartg LAPACK Givens rotation construction routine.
c slaset LAPACK matrix initialization routine.
c sgemv Level 2 BLAS routine for matrix vector multiplication.
c saxpy Level 1 BLAS that computes a vector triad.
c scopy Level 1 BLAS that copies one vector to another .
c sscal Level 1 BLAS that scales a vector.
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\Revision history:
c xx/xx/92: Version ' 2.4'
c
c\SCCS Information: @(#)
c FILE: napps.F SID: 2.4 DATE OF SID: 3/28/97 RELEASE: 2
c
c\Remarks
c 1. In this version, each shift is applied to all the sublocks of
c the Hessenberg matrix H and not just to the submatrix that it
c comes from. Deflation as in LAPACK routine slahqr (QR algorithm
c for upper Hessenberg matrices ) is used.
c The subdiagonals of H are enforced to be non-negative.
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine snapps
& ( n, kev, np, shiftr, shifti, v, ldv, h, ldh, resid, q, ldq,
& workl, workd )
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
integer kev, ldh, ldq, ldv, n, np
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Real
& h(ldh,kev+np), resid(n), shifti(np), shiftr(np),
& v(ldv,kev+np), q(ldq,kev+np), workd(2*n), workl(kev+np)
c
c %------------%
c | Parameters |
c %------------%
c
Real
& one, zero
parameter (one = 1.0E+0, zero = 0.0E+0)
c
c %------------------------%
c | Local Scalars & Arrays |
c %------------------------%
c
integer i, iend, ir, istart, j, jj, kplusp, msglvl, nr
logical cconj, first
Real
& c, f, g, h11, h12, h21, h22, h32, ovfl, r, s, sigmai,
& sigmar, smlnum, ulp, unfl, u(3), t, tau, tst1
save first, ovfl, smlnum, ulp, unfl
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external saxpy, scopy, sscal, slacpy, slarfg, slarf,
& slaset, slabad, arscnd, slartg
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Real
& slamch, slanhs, slapy2
external slamch, slanhs, slapy2
c
c %----------------------%
c | Intrinsics Functions |
c %----------------------%
c
intrinsic abs, max, min
c
c %----------------%
c | Data statments |
c %----------------%
c
data first / .true. /
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
if (first) then
c
c %-----------------------------------------------%
c | Set machine-dependent constants for the |
c | stopping criterion. If norm(H) <= sqrt(OVFL), |
c | overflow should not occur. |
c | REFERENCE: LAPACK subroutine slahqr |
c %-----------------------------------------------%
c
unfl = slamch( 'safe minimum' )
ovfl = one / unfl
call slabad( unfl, ovfl )
ulp = slamch( 'precision' )
smlnum = unfl*( n / ulp )
first = .false.
end if
c
c %-------------------------------%
c | Initialize timing statistics |
c | & message level for debugging |
c %-------------------------------%
c
call arscnd (t0)
msglvl = mnapps
kplusp = kev + np
c
c %--------------------------------------------%
c | Initialize Q to the identity to accumulate |
c | the rotations and reflections |
c %--------------------------------------------%
c
call slaset ('All', kplusp, kplusp, zero, one, q, ldq)
c
c %----------------------------------------------%
c | Quick return if there are no shifts to apply |
c %----------------------------------------------%
c
if (np .eq. 0) go to 9000
c
c %----------------------------------------------%
c | Chase the bulge with the application of each |
c | implicit shift. Each shift is applied to the |
c | whole matrix including each block. |
c %----------------------------------------------%
c
cconj = .false.
do 110 jj = 1, np
sigmar = shiftr(jj)
sigmai = shifti(jj)
c
if (msglvl .gt. 2 ) then
call ivout (logfil, 1, jj, ndigit,
& '_napps: shift number.')
call svout (logfil, 1, sigmar, ndigit,
& '_napps: The real part of the shift ')
call svout (logfil, 1, sigmai, ndigit,
& '_napps: The imaginary part of the shift ')
end if
c
c %-------------------------------------------------%
c | The following set of conditionals is necessary |
c | in order that complex conjugate pairs of shifts |
c | are applied together or not at all. |
c %-------------------------------------------------%
c
if ( cconj ) then
c
c %-----------------------------------------%
c | cconj = .true. means the previous shift |
c | had non-zero imaginary part. |
c %-----------------------------------------%
c
cconj = .false.
go to 110
else if ( jj .lt. np .and. abs( sigmai ) .gt. zero ) then
c
c %------------------------------------%
c | Start of a complex conjugate pair. |
c %------------------------------------%
c
cconj = .true.
else if ( jj .eq. np .and. abs( sigmai ) .gt. zero ) then
c
c %----------------------------------------------%
c | The last shift has a nonzero imaginary part. |
c | Don't apply it; thus the order of the |
c | compressed H is order KEV+1 since only np-1 |
c | were applied. |
c %----------------------------------------------%
c
kev = kev + 1
go to 110
end if
istart = 1
20 continue
c
c %--------------------------------------------------%
c | if sigmai = 0 then |
c | Apply the jj-th shift ... |
c | else |
c | Apply the jj-th and (jj+1)-th together ... |
c | (Note that jj < np at this point in the code) |
c | end |
c | to the current block of H. The next do loop |
c | determines the current block ; |
c %--------------------------------------------------%
c
do 30 i = istart, kplusp-1
c
c %----------------------------------------%
c | Check for splitting and deflation. Use |
c | a standard test as in the QR algorithm |
c | REFERENCE: LAPACK subroutine slahqr |
c %----------------------------------------%
c
tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
if( tst1.eq.zero )
& tst1 = slanhs( '1', kplusp-jj+1, h, ldh, workl )
if( abs( h( i+1,i ) ).le.max( ulp*tst1, smlnum ) ) then
if (msglvl .gt. 0) then
call ivout (logfil, 1, i, ndigit,
& '_napps: matrix splitting at row/column no.')
call ivout (logfil, 1, jj, ndigit,
& '_napps: matrix splitting with shift number.')
call svout (logfil, 1, h(i+1,i), ndigit,
& '_napps: off diagonal element.')
end if
iend = i
h(i+1,i) = zero
go to 40
end if
30 continue
iend = kplusp
40 continue
c
if (msglvl .gt. 2) then
call ivout (logfil, 1, istart, ndigit,
& '_napps: Start of current block ')
call ivout (logfil, 1, iend, ndigit,
& '_napps: End of current block ')
end if
c
c %------------------------------------------------%
c | No reason to apply a shift to block of order 1 |
c %------------------------------------------------%
c
if ( istart .eq. iend ) go to 100
c
c %------------------------------------------------------%
c | If istart + 1 = iend then no reason to apply a |
c | complex conjugate pair of shifts on a 2 by 2 matrix. |
c %------------------------------------------------------%
c
if ( istart + 1 .eq. iend .and. abs( sigmai ) .gt. zero )
& go to 100
c
h11 = h(istart,istart)
h21 = h(istart+1,istart)
if ( abs( sigmai ) .le. zero ) then
c
c %---------------------------------------------%
c | Real-valued shift ==> apply single shift QR |
c %---------------------------------------------%
c
f = h11 - sigmar
g = h21
c
do 80 i = istart, iend-1
c
c %-----------------------------------------------------%
c | Contruct the plane rotation G to zero out the bulge |
c %-----------------------------------------------------%
c
call slartg (f, g, c, s, r)
if (i .gt. istart) then
c
c %-------------------------------------------%
c | The following ensures that h(1:iend-1,1), |
c | the first iend-2 off diagonal of elements |
c | H, remain non negative. |
c %-------------------------------------------%
c
if (r .lt. zero) then
r = -r
c = -c
s = -s
end if
h(i,i-1) = r
h(i+1,i-1) = zero
end if
c
c %---------------------------------------------%
c | Apply rotation to the left of H; H <- G'*H |
c %---------------------------------------------%
c
do 50 j = i, kplusp
t = c*h(i,j) + s*h(i+1,j)
h(i+1,j) = -s*h(i,j) + c*h(i+1,j)
h(i,j) = t
50 continue
c
c %---------------------------------------------%
c | Apply rotation to the right of H; H <- H*G |
c %---------------------------------------------%
c
do 60 j = 1, min(i+2,iend)
t = c*h(j,i) + s*h(j,i+1)
h(j,i+1) = -s*h(j,i) + c*h(j,i+1)
h(j,i) = t
60 continue
c
c %----------------------------------------------------%
c | Accumulate the rotation in the matrix Q; Q <- Q*G |
c %----------------------------------------------------%
c
do 70 j = 1, min( i+jj, kplusp )
t = c*q(j,i) + s*q(j,i+1)
q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
q(j,i) = t
70 continue
c
c %---------------------------%
c | Prepare for next rotation |
c %---------------------------%
c
if (i .lt. iend-1) then
f = h(i+1,i)
g = h(i+2,i)
end if
80 continue
c
c %-----------------------------------%
c | Finished applying the real shift. |
c %-----------------------------------%
c
else
c
c %----------------------------------------------------%
c | Complex conjugate shifts ==> apply double shift QR |
c %----------------------------------------------------%
c
h12 = h(istart,istart+1)
h22 = h(istart+1,istart+1)
h32 = h(istart+2,istart+1)
c
c %---------------------------------------------------------%
c | Compute 1st column of (H - shift*I)*(H - conj(shift)*I) |
c %---------------------------------------------------------%
c
s = 2.0*sigmar
t = slapy2 ( sigmar, sigmai )
u(1) = ( h11 * (h11 - s) + t * t ) / h21 + h12
u(2) = h11 + h22 - s
u(3) = h32
c
do 90 i = istart, iend-1
c
nr = min ( 3, iend-i+1 )
c
c %-----------------------------------------------------%
c | Construct Householder reflector G to zero out u(1). |
c | G is of the form I - tau*( 1 u )' * ( 1 u' ). |
c %-----------------------------------------------------%
c
call slarfg ( nr, u(1), u(2), 1, tau )
c
if (i .gt. istart) then
h(i,i-1) = u(1)
h(i+1,i-1) = zero
if (i .lt. iend-1) h(i+2,i-1) = zero
end if
u(1) = one
c
c %--------------------------------------%
c | Apply the reflector to the left of H |
c %--------------------------------------%
c
call slarf ('Left', nr, kplusp-i+1, u, 1, tau,
& h(i,i), ldh, workl)
c
c %---------------------------------------%
c | Apply the reflector to the right of H |
c %---------------------------------------%
c
ir = min ( i+3, iend )
call slarf ('Right', ir, nr, u, 1, tau,
& h(1,i), ldh, workl)
c
c %-----------------------------------------------------%
c | Accumulate the reflector in the matrix Q; Q <- Q*G |
c %-----------------------------------------------------%
c
call slarf ('Right', kplusp, nr, u, 1, tau,
& q(1,i), ldq, workl)
c
c %----------------------------%
c | Prepare for next reflector |
c %----------------------------%
c
if (i .lt. iend-1) then
u(1) = h(i+1,i)
u(2) = h(i+2,i)
if (i .lt. iend-2) u(3) = h(i+3,i)
end if
c
90 continue
c
c %--------------------------------------------%
c | Finished applying a complex pair of shifts |
c | to the current block |
c %--------------------------------------------%
c
end if
c
100 continue
c
c %---------------------------------------------------------%
c | Apply the same shift to the next block if there is any. |
c %---------------------------------------------------------%
c
istart = iend + 1
if (iend .lt. kplusp) go to 20
c
c %---------------------------------------------%
c | Loop back to the top to get the next shift. |
c %---------------------------------------------%
c
110 continue
c
c %--------------------------------------------------%
c | Perform a similarity transformation that makes |
c | sure that H will have non negative sub diagonals |
c %--------------------------------------------------%
c
do 120 j=1,kev
if ( h(j+1,j) .lt. zero ) then
call sscal( kplusp-j+1, -one, h(j+1,j), ldh )
call sscal( min(j+2, kplusp), -one, h(1,j+1), 1 )
call sscal( min(j+np+1,kplusp), -one, q(1,j+1), 1 )
end if
120 continue
c
do 130 i = 1, kev
c
c %--------------------------------------------%
c | Final check for splitting and deflation. |
c | Use a standard test as in the QR algorithm |
c | REFERENCE: LAPACK subroutine slahqr |
c %--------------------------------------------%
c
tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
if( tst1.eq.zero )
& tst1 = slanhs( '1', kev, h, ldh, workl )
if( h( i+1,i ) .le. max( ulp*tst1, smlnum ) )
& h(i+1,i) = zero
130 continue
c
c %-------------------------------------------------%
c | Compute the (kev+1)-st column of (V*Q) and |
c | temporarily store the result in WORKD(N+1:2*N). |
c | This is needed in the residual update since we |
c | cannot GUARANTEE that the corresponding entry |
c | of H would be zero as in exact arithmetic. |
c %-------------------------------------------------%
c
if (h(kev+1,kev) .gt. zero)
& call sgemv ('N', n, kplusp, one, v, ldv, q(1,kev+1), 1, zero,
& workd(n+1), 1)
c
c %----------------------------------------------------------%
c | Compute column 1 to kev of (V*Q) in backward order |
c | taking advantage of the upper Hessenberg structure of Q. |
c %----------------------------------------------------------%
c
do 140 i = 1, kev
call sgemv ('N', n, kplusp-i+1, one, v, ldv,
& q(1,kev-i+1), 1, zero, workd, 1)
call scopy (n, workd, 1, v(1,kplusp-i+1), 1)
140 continue
c
c %-------------------------------------------------%
c | Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
c %-------------------------------------------------%
c
call slacpy ('A', n, kev, v(1,kplusp-kev+1), ldv, v, ldv)
c
c %--------------------------------------------------------------%
c | Copy the (kev+1)-st column of (V*Q) in the appropriate place |
c %--------------------------------------------------------------%
c
if (h(kev+1,kev) .gt. zero)
& call scopy (n, workd(n+1), 1, v(1,kev+1), 1)
c
c %-------------------------------------%
c | Update the residual vector: |
c | r <- sigmak*r + betak*v(:,kev+1) |
c | where |
c | sigmak = (e_{kplusp}'*Q)*e_{kev} |
c | betak = e_{kev+1}'*H*e_{kev} |
c %-------------------------------------%
c
call sscal (n, q(kplusp,kev), resid, 1)
if (h(kev+1,kev) .gt. zero)
& call saxpy (n, h(kev+1,kev), v(1,kev+1), 1, resid, 1)
c
if (msglvl .gt. 1) then
call svout (logfil, 1, q(kplusp,kev), ndigit,
& '_napps: sigmak = (e_{kev+p}^T*Q)*e_{kev}')
call svout (logfil, 1, h(kev+1,kev), ndigit,
& '_napps: betak = e_{kev+1}^T*H*e_{kev}')
call ivout (logfil, 1, kev, ndigit,
& '_napps: Order of the final Hessenberg matrix ')
if (msglvl .gt. 2) then
call smout (logfil, kev, kev, h, ldh, ndigit,
& '_napps: updated Hessenberg matrix H for next iteration')
end if
c
end if
c
9000 continue
call arscnd (t1)
tnapps = tnapps + (t1 - t0)
c
return
c
c %---------------%
c | End of snapps |
c %---------------%
c
end