forked from juanjosegarciaripoll/tensor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssapps.f
516 lines (516 loc) · 18 KB
/
ssapps.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
c-----------------------------------------------------------------------
c\BeginDoc
c
c\Name: ssapps
c
c\Description:
c Given the Arnoldi factorization
c
c A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
c
c apply NP shifts implicitly resulting in
c
c A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
c
c where Q is an orthogonal matrix of order KEV+NP. Q is the product of
c rotations resulting from the NP bulge chasing sweeps. The updated Arnoldi
c factorization becomes:
c
c A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
c
c\Usage:
c call ssapps
c ( N, KEV, NP, SHIFT, V, LDV, H, LDH, RESID, Q, LDQ, WORKD )
c
c\Arguments
c N Integer. (INPUT)
c Problem size, i.e. dimension of matrix A.
c
c KEV Integer. (INPUT)
c INPUT: KEV+NP is the size of the input matrix H.
c OUTPUT: KEV is the size of the updated matrix HNEW.
c
c NP Integer. (INPUT)
c Number of implicit shifts to be applied.
c
c SHIFT Real array of length NP. (INPUT)
c The shifts to be applied.
c
c V Real N by (KEV+NP) array. (INPUT/OUTPUT)
c INPUT: V contains the current KEV+NP Arnoldi vectors.
c OUTPUT: VNEW = V(1:n,1:KEV); the updated Arnoldi vectors
c are in the first KEV columns of V.
c
c LDV Integer. (INPUT)
c Leading dimension of V exactly as declared in the calling
c program.
c
c H Real (KEV+NP) by 2 array. (INPUT/OUTPUT)
c INPUT: H contains the symmetric tridiagonal matrix of the
c Arnoldi factorization with the subdiagonal in the 1st column
c starting at H(2,1) and the main diagonal in the 2nd column.
c OUTPUT: H contains the updated tridiagonal matrix in the
c KEV leading submatrix.
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c RESID Real array of length (N). (INPUT/OUTPUT)
c INPUT: RESID contains the the residual vector r_{k+p}.
c OUTPUT: RESID is the updated residual vector rnew_{k}.
c
c Q Real KEV+NP by KEV+NP work array. (WORKSPACE)
c Work array used to accumulate the rotations during the bulge
c chase sweep.
c
c LDQ Integer. (INPUT)
c Leading dimension of Q exactly as declared in the calling
c program.
c
c WORKD Real work array of length 2*N. (WORKSPACE)
c Distributed array used in the application of the accumulated
c orthogonal matrix Q.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx real
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
c Restarted Arnoldi Iteration", Rice University Technical Report
c TR95-13, Department of Computational and Applied Mathematics.
c
c\Routines called:
c ivout ARPACK utility routine that prints integers.
c arscnd ARPACK utility routine for timing.
c svout ARPACK utility routine that prints vectors.
c slamch LAPACK routine that determines machine constants.
c slartg LAPACK Givens rotation construction routine.
c slacpy LAPACK matrix copy routine.
c slaset LAPACK matrix initialization routine.
c sgemv Level 2 BLAS routine for matrix vector multiplication.
c saxpy Level 1 BLAS that computes a vector triad.
c scopy Level 1 BLAS that copies one vector to another.
c sscal Level 1 BLAS that scales a vector.
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\Revision history:
c 12/16/93: Version ' 2.4'
c
c\SCCS Information: @(#)
c FILE: sapps.F SID: 2.6 DATE OF SID: 3/28/97 RELEASE: 2
c
c\Remarks
c 1. In this version, each shift is applied to all the subblocks of
c the tridiagonal matrix H and not just to the submatrix that it
c comes from. This routine assumes that the subdiagonal elements
c of H that are stored in h(1:kev+np,1) are nonegative upon input
c and enforce this condition upon output. This version incorporates
c deflation. See code for documentation.
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine ssapps
& ( n, kev, np, shift, v, ldv, h, ldh, resid, q, ldq, workd )
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
integer kev, ldh, ldq, ldv, n, np
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Real
& h(ldh,2), q(ldq,kev+np), resid(n), shift(np),
& v(ldv,kev+np), workd(2*n)
c
c %------------%
c | Parameters |
c %------------%
c
Real
& one, zero
parameter (one = 1.0E+0, zero = 0.0E+0)
c
c %---------------%
c | Local Scalars |
c %---------------%
c
integer i, iend, istart, itop, j, jj, kplusp, msglvl
logical first
Real
& a1, a2, a3, a4, big, c, epsmch, f, g, r, s
save epsmch, first
c
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external saxpy, scopy, sscal, slacpy, slartg, slaset, svout,
& ivout, arscnd, sgemv
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Real
& slamch
external slamch
c
c %----------------------%
c | Intrinsics Functions |
c %----------------------%
c
intrinsic abs
c
c %----------------%
c | Data statments |
c %----------------%
c
data first / .true. /
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
if (first) then
epsmch = slamch('Epsilon-Machine')
first = .false.
end if
itop = 1
c
c %-------------------------------%
c | Initialize timing statistics |
c | & message level for debugging |
c %-------------------------------%
c
call arscnd (t0)
msglvl = msapps
c
kplusp = kev + np
c
c %----------------------------------------------%
c | Initialize Q to the identity matrix of order |
c | kplusp used to accumulate the rotations. |
c %----------------------------------------------%
c
call slaset ('All', kplusp, kplusp, zero, one, q, ldq)
c
c %----------------------------------------------%
c | Quick return if there are no shifts to apply |
c %----------------------------------------------%
c
if (np .eq. 0) go to 9000
c
c %----------------------------------------------------------%
c | Apply the np shifts implicitly. Apply each shift to the |
c | whole matrix and not just to the submatrix from which it |
c | comes. |
c %----------------------------------------------------------%
c
do 90 jj = 1, np
c
istart = itop
c
c %----------------------------------------------------------%
c | Check for splitting and deflation. Currently we consider |
c | an off-diagonal element h(i+1,1) negligible if |
c | h(i+1,1) .le. epsmch*( |h(i,2)| + |h(i+1,2)| ) |
c | for i=1:KEV+NP-1. |
c | If above condition tests true then we set h(i+1,1) = 0. |
c | Note that h(1:KEV+NP,1) are assumed to be non negative. |
c %----------------------------------------------------------%
c
20 continue
c
c %------------------------------------------------%
c | The following loop exits early if we encounter |
c | a negligible off diagonal element. |
c %------------------------------------------------%
c
do 30 i = istart, kplusp-1
big = abs(h(i,2)) + abs(h(i+1,2))
if (h(i+1,1) .le. epsmch*big) then
if (msglvl .gt. 0) then
call ivout (logfil, 1, i, ndigit,
& '_sapps: deflation at row/column no.')
call ivout (logfil, 1, jj, ndigit,
& '_sapps: occured before shift number.')
call svout (logfil, 1, h(i+1,1), ndigit,
& '_sapps: the corresponding off diagonal element')
end if
h(i+1,1) = zero
iend = i
go to 40
end if
30 continue
iend = kplusp
40 continue
c
if (istart .lt. iend) then
c
c %--------------------------------------------------------%
c | Construct the plane rotation G'(istart,istart+1,theta) |
c | that attempts to drive h(istart+1,1) to zero. |
c %--------------------------------------------------------%
c
f = h(istart,2) - shift(jj)
g = h(istart+1,1)
call slartg (f, g, c, s, r)
c
c %-------------------------------------------------------%
c | Apply rotation to the left and right of H; |
c | H <- G' * H * G, where G = G(istart,istart+1,theta). |
c | This will create a "bulge". |
c %-------------------------------------------------------%
c
a1 = c*h(istart,2) + s*h(istart+1,1)
a2 = c*h(istart+1,1) + s*h(istart+1,2)
a4 = c*h(istart+1,2) - s*h(istart+1,1)
a3 = c*h(istart+1,1) - s*h(istart,2)
h(istart,2) = c*a1 + s*a2
h(istart+1,2) = c*a4 - s*a3
h(istart+1,1) = c*a3 + s*a4
c
c %----------------------------------------------------%
c | Accumulate the rotation in the matrix Q; Q <- Q*G |
c %----------------------------------------------------%
c
do 60 j = 1, min(istart+jj,kplusp)
a1 = c*q(j,istart) + s*q(j,istart+1)
q(j,istart+1) = - s*q(j,istart) + c*q(j,istart+1)
q(j,istart) = a1
60 continue
c
c
c %----------------------------------------------%
c | The following loop chases the bulge created. |
c | Note that the previous rotation may also be |
c | done within the following loop. But it is |
c | kept separate to make the distinction among |
c | the bulge chasing sweeps and the first plane |
c | rotation designed to drive h(istart+1,1) to |
c | zero. |
c %----------------------------------------------%
c
do 70 i = istart+1, iend-1
c
c %----------------------------------------------%
c | Construct the plane rotation G'(i,i+1,theta) |
c | that zeros the i-th bulge that was created |
c | by G(i-1,i,theta). g represents the bulge. |
c %----------------------------------------------%
c
f = h(i,1)
g = s*h(i+1,1)
c
c %----------------------------------%
c | Final update with G(i-1,i,theta) |
c %----------------------------------%
c
h(i+1,1) = c*h(i+1,1)
call slartg (f, g, c, s, r)
c
c %-------------------------------------------%
c | The following ensures that h(1:iend-1,1), |
c | the first iend-2 off diagonal of elements |
c | H, remain non negative. |
c %-------------------------------------------%
c
if (r .lt. zero) then
r = -r
c = -c
s = -s
end if
c
c %--------------------------------------------%
c | Apply rotation to the left and right of H; |
c | H <- G * H * G', where G = G(i,i+1,theta) |
c %--------------------------------------------%
c
h(i,1) = r
c
a1 = c*h(i,2) + s*h(i+1,1)
a2 = c*h(i+1,1) + s*h(i+1,2)
a3 = c*h(i+1,1) - s*h(i,2)
a4 = c*h(i+1,2) - s*h(i+1,1)
c
h(i,2) = c*a1 + s*a2
h(i+1,2) = c*a4 - s*a3
h(i+1,1) = c*a3 + s*a4
c
c %----------------------------------------------------%
c | Accumulate the rotation in the matrix Q; Q <- Q*G |
c %----------------------------------------------------%
c
do 50 j = 1, min( i+jj, kplusp )
a1 = c*q(j,i) + s*q(j,i+1)
q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
q(j,i) = a1
50 continue
c
70 continue
c
end if
c
c %--------------------------%
c | Update the block pointer |
c %--------------------------%
c
istart = iend + 1
c
c %------------------------------------------%
c | Make sure that h(iend,1) is non-negative |
c | If not then set h(iend,1) <-- -h(iend,1) |
c | and negate the last column of Q. |
c | We have effectively carried out a |
c | similarity on transformation H |
c %------------------------------------------%
c
if (h(iend,1) .lt. zero) then
h(iend,1) = -h(iend,1)
call sscal(kplusp, -one, q(1,iend), 1)
end if
c
c %--------------------------------------------------------%
c | Apply the same shift to the next block if there is any |
c %--------------------------------------------------------%
c
if (iend .lt. kplusp) go to 20
c
c %-----------------------------------------------------%
c | Check if we can increase the the start of the block |
c %-----------------------------------------------------%
c
do 80 i = itop, kplusp-1
if (h(i+1,1) .gt. zero) go to 90
itop = itop + 1
80 continue
c
c %-----------------------------------%
c | Finished applying the jj-th shift |
c %-----------------------------------%
c
90 continue
c
c %------------------------------------------%
c | All shifts have been applied. Check for |
c | more possible deflation that might occur |
c | after the last shift is applied. |
c %------------------------------------------%
c
do 100 i = itop, kplusp-1
big = abs(h(i,2)) + abs(h(i+1,2))
if (h(i+1,1) .le. epsmch*big) then
if (msglvl .gt. 0) then
call ivout (logfil, 1, i, ndigit,
& '_sapps: deflation at row/column no.')
call svout (logfil, 1, h(i+1,1), ndigit,
& '_sapps: the corresponding off diagonal element')
end if
h(i+1,1) = zero
end if
100 continue
c
c %-------------------------------------------------%
c | Compute the (kev+1)-st column of (V*Q) and |
c | temporarily store the result in WORKD(N+1:2*N). |
c | This is not necessary if h(kev+1,1) = 0. |
c %-------------------------------------------------%
c
if ( h(kev+1,1) .gt. zero )
& call sgemv ('N', n, kplusp, one, v, ldv,
& q(1,kev+1), 1, zero, workd(n+1), 1)
c
c %-------------------------------------------------------%
c | Compute column 1 to kev of (V*Q) in backward order |
c | taking advantage that Q is an upper triangular matrix |
c | with lower bandwidth np. |
c | Place results in v(:,kplusp-kev:kplusp) temporarily. |
c %-------------------------------------------------------%
c
do 130 i = 1, kev
call sgemv ('N', n, kplusp-i+1, one, v, ldv,
& q(1,kev-i+1), 1, zero, workd, 1)
call scopy (n, workd, 1, v(1,kplusp-i+1), 1)
130 continue
c
c %-------------------------------------------------%
c | Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
c %-------------------------------------------------%
c
call slacpy ('All', n, kev, v(1,np+1), ldv, v, ldv)
c
c %--------------------------------------------%
c | Copy the (kev+1)-st column of (V*Q) in the |
c | appropriate place if h(kev+1,1) .ne. zero. |
c %--------------------------------------------%
c
if ( h(kev+1,1) .gt. zero )
& call scopy (n, workd(n+1), 1, v(1,kev+1), 1)
c
c %-------------------------------------%
c | Update the residual vector: |
c | r <- sigmak*r + betak*v(:,kev+1) |
c | where |
c | sigmak = (e_{kev+p}'*Q)*e_{kev} |
c | betak = e_{kev+1}'*H*e_{kev} |
c %-------------------------------------%
c
call sscal (n, q(kplusp,kev), resid, 1)
if (h(kev+1,1) .gt. zero)
& call saxpy (n, h(kev+1,1), v(1,kev+1), 1, resid, 1)
c
if (msglvl .gt. 1) then
call svout (logfil, 1, q(kplusp,kev), ndigit,
& '_sapps: sigmak of the updated residual vector')
call svout (logfil, 1, h(kev+1,1), ndigit,
& '_sapps: betak of the updated residual vector')
call svout (logfil, kev, h(1,2), ndigit,
& '_sapps: updated main diagonal of H for next iteration')
if (kev .gt. 1) then
call svout (logfil, kev-1, h(2,1), ndigit,
& '_sapps: updated sub diagonal of H for next iteration')
end if
end if
c
call arscnd (t1)
tsapps = tsapps + (t1 - t0)
c
9000 continue
return
c
c %---------------%
c | End of ssapps |
c %---------------%
c
end