forked from Tencent/ncnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.cpp
78 lines (66 loc) · 2.28 KB
/
benchmark.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#else // _WIN32
#include <sys/time.h>
#endif // _WIN32
#include "benchmark.h"
#if NCNN_BENCHMARK
#include <stdio.h>
#include "layer/convolution.h"
#endif // NCNN_BENCHMARK
namespace ncnn {
#ifdef _WIN32
double get_current_time()
{
LARGE_INTEGER freq;
LARGE_INTEGER pc;
QueryPerformanceFrequency(&freq);
QueryPerformanceCounter(&pc);
return pc.QuadPart * 1000.0 / freq.QuadPart;
}
#else // _WIN32
double get_current_time()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000.0 + tv.tv_usec / 1000.0;
}
#endif // _WIN32
#if NCNN_BENCHMARK
void benchmark(const Layer* layer, double start, double end)
{
fprintf(stderr, "%-24s %-24s %8.2lfms", layer->type.c_str(), layer->name.c_str(), end - start);
fprintf(stderr, " |");
fprintf(stderr, "\n");
}
void benchmark(const Layer* layer, const Mat& bottom_blob, Mat& top_blob, double start, double end)
{
fprintf(stderr, "%-24s %-24s %8.2lfms", layer->type.c_str(), layer->name.c_str(), end - start);
fprintf(stderr, " | feature_map: %4d x %-4d inch: %4d outch: %4d", bottom_blob.w, bottom_blob.h, bottom_blob.c, top_blob.c);
if (layer->type == "Convolution")
{
fprintf(stderr, " kernel: %1d x %1d stride: %1d x %1d",
((Convolution*)layer)->kernel_w,
((Convolution*)layer)->kernel_h,
((Convolution*)layer)->stride_w,
((Convolution*)layer)->stride_h
);
}
fprintf(stderr, "\n");
}
#endif // NCNN_BENCHMARK
} // namespace ncnn