forked from cpldcpu/BitNetMCU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
274 lines (218 loc) · 11.3 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import torch, torch.nn as nn, torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import StepLR, CosineAnnealingLR
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import ConcatDataset
from datetime import datetime
# from models import FCMNIST, CNNMNIST
from BitNetMCU import BitLinear, BitConv2d
import time
import random
import argparse
import yaml
from torchsummary import summary
import importlib
#----------------------------------------------
# BitNetMCU training
#----------------------------------------------
def create_run_name(hyperparameters):
runname = hyperparameters["runtag"] + '_' + hyperparameters["model"] + ('_Aug' if hyperparameters["augmentation"] else '') + '_BitMnist_' + hyperparameters["QuantType"] + "_width" + str(hyperparameters["network_width1"]) + "_" + str(hyperparameters["network_width2"]) + "_" + str(hyperparameters["network_width3"]) + "_epochs" + str(hyperparameters["num_epochs"])
hyperparameters["runname"] = runname
return runname
def load_model(model_name, params):
try:
module = importlib.import_module('models')
model_class = getattr(module, model_name)
return model_class(
network_width1=params["network_width1"],
network_width2=params["network_width2"],
network_width3=params["network_width3"],
QuantType=params["QuantType"],
NormType=params["NormType"],
WScale=params["WScale"]
)
except AttributeError:
raise ValueError(f"Model {model_name} not found in models.py")
def log_positive_activations(model, writer, epoch, all_test_images, batch_size):
total_activations = 0
positive_activations = 0
def hook_fn(module, input, output):
nonlocal total_activations, positive_activations
if isinstance(module, nn.ReLU):
total_activations += output.numel()
positive_activations += (output > 0).sum().item()
hooks = []
for layer in model.modules():
if isinstance(layer, nn.ReLU):
hooks.append(layer.register_forward_hook(hook_fn))
# Run a forward pass to trigger hooks
with torch.no_grad():
for i in range(len(all_test_images) // batch_size):
images = all_test_images[i * batch_size:(i + 1) * batch_size]
model(images)
for hook in hooks:
hook.remove()
fraction_positive = positive_activations / total_activations
writer.add_scalar('Activations/positive_fraction', fraction_positive, epoch+1)
return fraction_positive
# writer.add_scalar('Activations/positive_fraction', fraction_positive, epoch+1)
# print(f'Fraction of positive activations: {fraction_positive:.4f}')
def train_model(model, device, hyperparameters, train_data, test_data):
num_epochs = hyperparameters["num_epochs"]
learning_rate = hyperparameters["learning_rate"]
step_size = hyperparameters["step_size"]
lr_decay = hyperparameters["lr_decay"]
halve_lr_epoch = hyperparameters.get("halve_lr_epoch", -1)
runname = create_run_name(hyperparameters)
# define dataloaders
batch_size = hyperparameters["batch_size"] # Define your batch size
# ON-the-fly augmentation requires using the (slow) dataloader. Without augmentation, we can load the entire dataset into GPU for speedup
if hyperparameters["augmentation"]:
train_loader = DataLoader(
train_data, batch_size=batch_size, shuffle=True,
num_workers=4, pin_memory=True)
else:
# load entire dataset into GPU for 5x speedup
train_loader = DataLoader(train_data, batch_size=len(train_data), shuffle=False) # shuffling will be done separately
entire_dataset = next(iter(train_loader))
all_train_images, all_train_labels = entire_dataset[0].to(device), entire_dataset[1].to(device)
# Test dataset is always in GPU
test_loader = DataLoader(test_data, batch_size=len(test_data), shuffle=False)
entire_dataset = next(iter(test_loader))
all_test_images, all_test_labels = entire_dataset[0].to(device), entire_dataset[1].to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
if hyperparameters["scheduler"] == "StepLR":
scheduler = StepLR(optimizer, step_size=step_size, gamma=lr_decay)
elif hyperparameters["scheduler"] == "Cosine":
scheduler = CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=0)
criterion = nn.CrossEntropyLoss()
# tensorboard writer
now_str = datetime.now().strftime("%Y%m%d-%H%M%S")
writer = SummaryWriter(log_dir=f'runs/{runname}-{now_str}')
train_loss=[]
test_loss = []
# Train the CNN
for epoch in range(num_epochs):
correct = 0
train_loss=[]
start_time = time.time()
if hyperparameters["augmentation"]:
for i, (images, labels) in enumerate(train_loader):
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss.append(loss.item())
correct += (predicted == labels).sum().item()
else:
# Shuffle images (important!)
indices = list(range(len(all_train_images)))
random.shuffle(indices)
for i in range(len(indices) // batch_size):
batch_indices = indices[i * batch_size:(i + 1) * batch_size]
images = torch.stack([all_train_images[i] for i in batch_indices])
labels = torch.stack([all_train_labels[i] for i in batch_indices])
optimizer.zero_grad()
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss.append(loss.item())
correct += (predicted == labels).sum().item()
scheduler.step()
if epoch + 1 == halve_lr_epoch:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.5
print(f"Learning rate halved at epoch {epoch + 1}")
trainaccuracy = correct / len(train_loader.dataset) * 100
correct = 0
total = 0
test_loss = []
with torch.no_grad():
for i in range(len(all_test_images) // batch_size):
images = all_test_images[i * batch_size:(i + 1) * batch_size]
labels = all_test_labels[i * batch_size:(i + 1) * batch_size]
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
test_loss.append(loss.item())
total += labels.size(0)
correct += (predicted == labels).sum().item()
# Log positive activations
activity=log_positive_activations(model, writer, epoch, all_test_images, batch_size)
end_time = time.time()
epoch_time = end_time - start_time
testaccuracy = correct / total * 100
print(f'Epoch [{epoch+1}/{num_epochs}], LTrain:{np.mean(train_loss):.6f} ATrain: {trainaccuracy:.2f}% LTest:{np.mean(test_loss):.6f} ATest: {correct / total * 100:.2f}% Time[s]: {epoch_time:.2f} Act: {activity*100:.1f}% w_clip/entropy[bits]: ', end='')
# update clipping scalars once per epoch
totalbits = 0
for i, layer in enumerate(model.modules()):
if isinstance(layer, BitLinear) or isinstance(layer, BitConv2d):
# update clipping scalar
if epoch < hyperparameters['maxw_update_until_epoch']:
layer.update_clipping_scalar(layer.weight, hyperparameters['maxw_algo'], hyperparameters['maxw_quantscale'])
# calculate entropy of weights
w_quant, _, _ = layer.weight_quant(layer.weight)
_, counts = np.unique(w_quant.cpu().detach().numpy(), return_counts=True)
probabilities = counts / np.sum(counts)
entropy = -np.sum(probabilities * np.log2(probabilities))
print(f'{layer.s.item():.3f}/{entropy:.2f}', end=' ')
totalbits += layer.weight.numel() * layer.bpw
print()
writer.add_scalar('Loss/train', np.mean(train_loss), epoch+1)
writer.add_scalar('Accuracy/train', trainaccuracy, epoch+1)
writer.add_scalar('Loss/test', np.mean(test_loss), epoch+1)
writer.add_scalar('Accuracy/test', testaccuracy, epoch+1)
writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], epoch+1)
writer.flush()
numofweights = sum(p.numel() for p in model.parameters() if p.requires_grad)
# totalbits = numofweights * hyperparameters['BPW']
print(f'TotalBits: {totalbits} TotalBytes: {totalbits/8.0} ')
writer.add_hparams(hyperparameters, {'Parameters': numofweights, 'Totalbits': totalbits, 'Accuracy/train': trainaccuracy, 'Accuracy/test': testaccuracy, 'Loss/train': np.mean(train_loss), 'Loss/test': np.mean(test_loss)})
writer.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Training script')
parser.add_argument('--params', type=str, help='Name of the parameter file', default='trainingparameters.yaml')
args = parser.parse_args()
if args.params:
paramname = args.params
else:
paramname = 'trainingparameters.yaml'
print(f'Load parameters from file: {paramname}')
with open(paramname) as f:
hyperparameters = yaml.safe_load(f)
runname= create_run_name(hyperparameters)
print(runname)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the MNIST dataset
transform = transforms.Compose([
transforms.Resize((16, 16)), # Resize images to 16x16
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_data = datasets.MNIST(root='data', train=True, transform=transform, download=True)
test_data = datasets.MNIST(root='data', train=False, transform=transform)
if hyperparameters["augmentation"]:
# Data augmentation for training data
augmented_transform = transforms.Compose([
# 10,10 seems to be best combination
transforms.RandomRotation(degrees=hyperparameters["rotation1"]),
transforms.RandomAffine(degrees=hyperparameters["rotation2"], translate=(0.1, 0.1), scale=(0.9, 1.1)), # both are needed for best results.
transforms.Resize((16, 16)), # Resize images to 16x16
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
augmented_train_data = datasets.MNIST(root='data', train=True, transform=augmented_transform)
train_data = ConcatDataset([train_data, augmented_train_data])
model = load_model(hyperparameters["model"], hyperparameters).to(device)
summary(model, input_size=(1, 16, 16)) # Assuming the input size is (1, 16, 16)
print('training...')
train_model(model, device, hyperparameters, train_data, test_data)
print('saving model...')
torch.save(model.state_dict(), f'modeldata/{runname}.pth')