forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetectron2pytorch.py
83 lines (71 loc) · 3.49 KB
/
detectron2pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
from collections import OrderedDict
import mmcv
import torch
arch_settings = {50: (3, 4, 6, 3), 101: (3, 4, 23, 3)}
def convert_bn(blobs, state_dict, caffe_name, torch_name, converted_names):
# detectron replace bn with affine channel layer
state_dict[torch_name + '.bias'] = torch.from_numpy(blobs[caffe_name +
'_b'])
state_dict[torch_name + '.weight'] = torch.from_numpy(blobs[caffe_name +
'_s'])
bn_size = state_dict[torch_name + '.weight'].size()
state_dict[torch_name + '.running_mean'] = torch.zeros(bn_size)
state_dict[torch_name + '.running_var'] = torch.ones(bn_size)
converted_names.add(caffe_name + '_b')
converted_names.add(caffe_name + '_s')
def convert_conv_fc(blobs, state_dict, caffe_name, torch_name,
converted_names):
state_dict[torch_name + '.weight'] = torch.from_numpy(blobs[caffe_name +
'_w'])
converted_names.add(caffe_name + '_w')
if caffe_name + '_b' in blobs:
state_dict[torch_name + '.bias'] = torch.from_numpy(blobs[caffe_name +
'_b'])
converted_names.add(caffe_name + '_b')
def convert(src, dst, depth):
"""Convert keys in detectron pretrained ResNet models to pytorch style."""
# load arch_settings
if depth not in arch_settings:
raise ValueError('Only support ResNet-50 and ResNet-101 currently')
block_nums = arch_settings[depth]
# load caffe model
caffe_model = mmcv.load(src, encoding='latin1')
blobs = caffe_model['blobs'] if 'blobs' in caffe_model else caffe_model
# convert to pytorch style
state_dict = OrderedDict()
converted_names = set()
convert_conv_fc(blobs, state_dict, 'conv1', 'conv1', converted_names)
convert_bn(blobs, state_dict, 'res_conv1_bn', 'bn1', converted_names)
for i in range(1, len(block_nums) + 1):
for j in range(block_nums[i - 1]):
if j == 0:
convert_conv_fc(blobs, state_dict, f'res{i + 1}_{j}_branch1',
f'layer{i}.{j}.downsample.0', converted_names)
convert_bn(blobs, state_dict, f'res{i + 1}_{j}_branch1_bn',
f'layer{i}.{j}.downsample.1', converted_names)
for k, letter in enumerate(['a', 'b', 'c']):
convert_conv_fc(blobs, state_dict,
f'res{i + 1}_{j}_branch2{letter}',
f'layer{i}.{j}.conv{k+1}', converted_names)
convert_bn(blobs, state_dict,
f'res{i + 1}_{j}_branch2{letter}_bn',
f'layer{i}.{j}.bn{k + 1}', converted_names)
# check if all layers are converted
for key in blobs:
if key not in converted_names:
print(f'Not Convert: {key}')
# save checkpoint
checkpoint = dict()
checkpoint['state_dict'] = state_dict
torch.save(checkpoint, dst)
def main():
parser = argparse.ArgumentParser(description='Convert model keys')
parser.add_argument('src', help='src detectron model path')
parser.add_argument('dst', help='save path')
parser.add_argument('depth', type=int, help='ResNet model depth')
args = parser.parse_args()
convert(args.src, args.dst, args.depth)
if __name__ == '__main__':
main()