forked from tidymodels/recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolcheck.R
111 lines (105 loc) · 2.66 KB
/
colcheck.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#' Check if all Columns are Present
#'
#' `check_cols` creates a *specification* of a recipe
#' step that will check if all the columns of the training frame are
#' present in the new data.
#'
#' @inheritParams check_missing
#' @template check-return
#' @family checks
#' @export
#' @details This check will break the `bake` function if any of the specified
#' columns is not present in the data. If the check passes, nothing is changed
#' to the data.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this check, a tibble with columns
#' `terms` (the selectors or variables selected) and `value` (the type)
#' is returned.
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass_rec <- recipe(HHV ~ ., data = biomass) %>%
#' step_rm(sample, dataset) %>%
#' check_cols(contains("gen")) %>%
#' step_center(all_numeric_predictors())
#' \dontrun{
#' bake(biomass_rec, biomass[, c("carbon", "HHV")])
#' }
check_cols <-
function(recipe,
...,
role = NA,
trained = FALSE,
skip = FALSE,
id = rand_id("cols")) {
add_check(
recipe,
check_cols_new(
terms = enquos(...),
role = role,
trained = trained,
columns = NULL,
skip = skip,
id = id
)
)
}
check_cols_new <-
function(terms, role, trained, columns, skip, id) {
check(
subclass = "cols",
prefix = "check_",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
prep.check_cols <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_cols_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id
)
}
bake.check_cols <- function(object, new_data, ...) {
original_cols <- object$columns
new_cols <- names(new_data)
missing <- setdiff(original_cols, new_cols)
if (length(missing) > 0) {
mis_cols <- paste(paste0("`", missing, "`"), collapse = ", ")
rlang::abort(
paste0(
"The following cols are missing from `new_data`: ",
mis_cols,
"."
)
)
}
new_data
}
print.check_cols <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Check if the following columns are present: "
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.check_cols <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = unname(x$columns))
} else {
res <- tibble(terms = sel2char(x$terms))
}
res$id <- x$id
res
}