forked from tidymodels/recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathharmonic.R
386 lines (355 loc) · 10.9 KB
/
harmonic.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#' Add sin and cos terms for harmonic analysis
#'
#' `step_harmonic` creates a *specification* of a recipe step that
#' will add sin and cos terms for harmonic analysis.
#'
#' @inheritParams step_pca
#' @inheritParams step_date
#' @inheritParams step_center
#'
#' @param ... One or more selector functions to choose variables
#' for this step. See [selections()] for more details. This will
#' typically be a single variable.
#' @param frequency A numeric vector with at least one value.
#' The value(s) must be greater than zero and finite.
#' @param cycle_size A numeric vector with at least one value that indicates
#' the size of a single cycle. `cycle_size` should have the same units as the
#' input variable(s).
#' @param starting_val either `NA`, numeric, Date or POSIXt value(s) that indicates
#' the reference point for the sin and cos curves for each input variable.
#' If the value is a `Date` or `POISXt` the value is converted to numeric
#' using `as.numeric`. This parameter may be specified to increase control
#' over the signal phase. If `starting_val` is not specified the default
#' is 0.
#' @template step-return
#' @family individual transformation steps
#' @export
#' @details This step seeks to describe periodic components of observational
#' data using a combination of sin and cos waves. To do this, each wave of a
#' specified frequency is modeled using one sin and one cos term. The two
#' terms for each frequency can then be used to estimate the amplitude and
#' phase shift of a periodic signal in observational data. The equation
#' relating cos waves of known frequency but unknown phase and amplitude to a
#' sum of sin and cos terms is below:
#'
#' \deqn{A_j cos(\sigma_j t_i - \Phi_j) = C_j cos(\sigma_j t_i) + S_j sin(\sigma_j t_i)}
#'
#' Solving the equation yields \eqn{C_j} and \eqn{S_j}. the
#' amplitude can then be obtained with:
#'
#' \deqn{A_j = \sqrt{C^2_j + S^2_j}}
#'
#' And the phase can be obtained with:
#' \deqn{\Phi_j = \arctan{(S_j / C_j)}}
#'
#' where:
#'
#' * \eqn{\sigma_j = 2 \pi (frequency / cycle\_size))}
#' * \eqn{A_j} is the amplitude of the \eqn{j^{th}} frequency
#' * \eqn{\Phi_j} is the phase of the \eqn{j^{th}} frequency
#' * \eqn{C_j} is the coefficient of the cos term for the \eqn{j^{th}} frequency
#' * \eqn{S_j} is the coefficient of the sin term for the \eqn{j^{th}} frequency
#'
#'
#' The periodic component is specified by `frequency` and `cycle_size`
#' parameters. The cycle size relates the specified frequency to the
#' input column(s) units. There are multiple ways to specify a wave of given
#' frequency, for example, a `POSIXct` input column given a `frequency` of
#' 24 and a `cycle_size` equal to 86400 is equivalent to a `frequency` of
#' 1.0 with `cycle_size` equal to 3600.
#'
#' @template case-weights-not-supported
#'
#' @references Doran, H. E., & Quilkey, J. J. (1972).
#' Harmonic analysis of seasonal data: some important properties.
#' American Journal of Agricultural Economics, 54, volume 4, part 1, 646-651.
#'
#' Foreman, M. G. G., & Henry, R. F. (1989).
#' The harmonic analysis of tidal model time series.
#' Advances in water resources, 12(3), 109-120.
#'
#' @examplesIf rlang::is_installed("ggplot2")
#' library(ggplot2, quietly = TRUE)
#' library(dplyr)
#'
#' data(sunspot.year)
#' sunspots <-
#' tibble(
#' year = 1700:1988,
#' n_sunspot = sunspot.year,
#' type = "measured"
#' ) %>%
#' slice(1:75)
#'
#' # sunspots period is around 11 years, sample spacing is one year
#' dat <- recipe(n_sunspot ~ year, data = sunspots) %>%
#' step_harmonic(year, frequency = 1 / 11, cycle_size = 1) %>%
#' prep() %>%
#' bake(new_data = NULL)
#'
#' fit <- lm(n_sunspot ~ year_sin_1 + year_cos_1, data = dat)
#'
#' preds <- tibble(
#' year = sunspots$year,
#' n_sunspot = fit$fitted.values,
#' type = "predicted"
#' )
#'
#' bind_rows(sunspots, preds) %>%
#' ggplot(aes(x = year, y = n_sunspot, color = type)) +
#' geom_line()
#'
#'
#' # ------------------------------------------------------------------------------
#' # POSIXct example
#'
#' date_time <-
#' as.POSIXct(
#' paste0(rep(1959:1997, each = 12), "-", rep(1:12, length(1959:1997)), "-01"),
#' tz = "UTC"
#' )
#'
#' carbon_dioxide <- tibble(
#' date_time = date_time,
#' co2 = as.numeric(co2),
#' type = "measured"
#' )
#'
#' # yearly co2 fluctuations
#' dat <-
#' recipe(co2 ~ date_time,
#' data = carbon_dioxide
#' ) %>%
#' step_mutate(date_time_num = as.numeric(date_time)) %>%
#' step_ns(date_time_num, deg_free = 3) %>%
#' step_harmonic(date_time, frequency = 1, cycle_size = 86400 * 365.24) %>%
#' prep() %>%
#' bake(new_data = NULL)
#'
#' fit <- lm(co2 ~ date_time_num_ns_1 + date_time_num_ns_2 +
#' date_time_num_ns_3 + date_time_sin_1 +
#' date_time_cos_1, data = dat)
#'
#' preds <- tibble(
#' date_time = date_time,
#' co2 = fit$fitted.values,
#' type = "predicted"
#' )
#'
#' bind_rows(carbon_dioxide, preds) %>%
#' ggplot(aes(x = date_time, y = co2, color = type)) +
#' geom_line()
step_harmonic <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
frequency = NA_real_,
cycle_size = NA_real_,
starting_val = NA_real_,
keep_original_cols = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("harmonic")) {
if (!all(is.numeric(cycle_size)) | all(is.na(cycle_size))) {
rlang::abort("cycle_size must have at least one non-NA numeric value.")
}
if (!all(is.na(starting_val)) &
!all(is.numeric(starting_val)) &
!all(inherits(starting_val, "Date")) &
!all(inherits(starting_val, "POSIXt"))) {
rlang::abort("starting_val must be NA, numeric, Date or POSIXt")
}
add_step(
recipe,
step_harmonic_new(
terms = enquos(...),
trained = trained,
role = role,
frequency = frequency,
cycle_size = cycle_size,
starting_val = starting_val,
keep_original_cols = keep_original_cols,
columns = columns,
skip = skip,
id = id
)
)
}
step_harmonic_new <-
function(terms, role, trained,
frequency, cycle_size,
starting_val, columns,
keep_original_cols, objects, skip, id) {
step(
subclass = "harmonic",
terms = terms,
role = role,
trained = trained,
frequency = frequency,
cycle_size = cycle_size,
starting_val = starting_val,
keep_original_cols = keep_original_cols,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_harmonic <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
harmonic_data <- info[info$variable %in% col_names, ]
# check input columns
if (any(harmonic_data$type != "date" & harmonic_data$type != "numeric")) {
rlang::abort(
paste0(
"All variables for `step_harmonic` should be either `Date` ",
"`POSIXct` or `numeric` classes."
)
)
}
# check cycle_size
if (length(x$cycle_size) == 1) {
cycle_sizes <- rep(x$cycle_size, length(col_names))
} else if (length(x$cycle_size) == length(col_names)) {
cycle_sizes <- x$cycle_size
} else {
rlang::abort(paste0(
"`cycle_size` must be length 1 or the same ",
"length as the input columns"
))
}
# check starting_val
if (all(is.na(x$starting_val))) {
starting_vals <- rep(0.0, length(col_names))
} else if (length(x$starting_val) == 1) {
starting_vals <- rep(as.numeric(x$starting_val), length(col_names))
} else if (length(x$starting_val) == length(col_names)) {
starting_vals <- x$starting_val
} else {
rlang::abort(paste0(
"`starting_val` must be length 1 or the same ",
"length as the input columns"
))
}
frequencies <- sort(unique(na.omit(x$frequency)))
names(frequencies) <- as.character(1:length(frequencies))
names(starting_vals) <- col_names
names(cycle_sizes) <- col_names
step_harmonic_new(
terms = x$terms,
role = x$role,
trained = TRUE,
frequency = frequencies,
cycle_size = cycle_sizes,
starting_val = starting_vals,
keep_original_cols = get_keep_original_cols(x),
columns = col_names,
skip = x$skip,
id = x$id
)
}
sin_cos <- function(x,
frequency,
starting_val,
cycle_size) {
if (all(is.na(x))) {
rlang::abort("variable must have at least one non-NA value")
}
nc <- length(frequency)
nr <- length(x)
# adjust phase
x <- x - as.numeric(starting_val)
# cycles per unit
cycle <- 2.0 * (pi * (x / cycle_size))
m <- matrix(NA_real_,
ncol = nc * 2L,
nrow = nr
)
for (i in seq_along(frequency)) {
m[, i] <- sin(cycle * frequency[i])
m[, i + nc] <- cos(cycle * frequency[i])
}
return(m)
}
#' @export
bake.step_harmonic <- function(object, new_data, ...) {
col_names <- names(object$starting_val)
# calculate sin and cos columns
for (i in seq_along(col_names)) {
col_name <- col_names[i]
n_frequency <- length(object$frequency)
res <- sin_cos(
as.numeric(new_data[[col_name]]),
object$frequency,
object$starting_val[i],
object$cycle_size[i]
)
colnames(res) <- paste0(
col_name,
rep(c("_sin_", "_cos_"), each = n_frequency),
1:n_frequency
)
res <- as_tibble(res)
new_data <- bind_cols(new_data, res)
}
keep_original_cols <- get_keep_original_cols(object)
if (!keep_original_cols) {
new_data <-
new_data[, !(colnames(new_data) %in% col_names), drop = FALSE]
}
new_data
}
#' @export
print.step_harmonic <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Harmonic numeric variables for "
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_harmonic <- function(x, ...) {
if (is_trained(x)) {
col_names <- names(x$starting_val)
n_frequency <- length(x$frequency)
n_terms <- length(col_names)
res <-
tibble(
terms = rep(col_names, each = n_frequency * 2L),
starting_val = rep(unname(x$starting_val), each = n_frequency * 2L),
cycle_size = rep(unname(x$cycle_size), each = n_frequency * 2L),
frequency = rep(rep(unname(x$frequency), times = 2L), times = n_terms),
)
res$key <- paste0(
res$terms,
rep(rep(c("_sin_", "_cos_"), each = n_frequency),
times = n_terms
),
res$frequency
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
starting_val = na_dbl,
cycle_size = na_dbl,
frequency = na_dbl,
key = na_chr
)
}
res$id <- x$id
res
}
#' @export
tunable.step_harmonic <- function(x, ...) {
tibble::tibble(
name = "frequency",
call_info = list(
list(pkg = "dials", fun = "harmonic_frequency")
),
source = "recipe",
component = "step_harmonic",
component_id = x$id
)
}