forked from tidymodels/recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrange_check.R
214 lines (204 loc) · 5.57 KB
/
range_check.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#' Check Range Consistency
#'
#' `check_range` creates a *specification* of a recipe
#' check that will check if the range of a numeric
#' variable changed in the new data.
#'
#' @inheritParams check_missing
#' @param slack_prop The allowed slack as a proportion of the range
#' of the variable in the train set.
#' @param warn If `TRUE` the check will throw a warning instead
#' of an error when failing.
#' @param lower A named numeric vector of minimum values in the train set.
#' This is `NULL` until computed by [prep()].
#' @param upper A named numeric vector of maximum values in the train set.
#' This is `NULL` until computed by [prep()].
#' @template check-return
#' @family checks
#' @export
#' @details
#' The amount of slack that is allowed is determined by the
#' `slack_prop`. This is a numeric of length one or two. If
#' of length one, the same proportion will be used at both ends
#' of the train set range. If of length two, its first value
#' is used to compute the allowed slack at the lower end,
#' the second to compute the allowed slack at the upper end.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this check, a tibble with columns
#' `terms` (the selectors or variables selected) and `value` (the means)
#' is returned.
#'
#' @examples
#' slack_df <- data_frame(x = 0:100)
#' slack_new_data <- data_frame(x = -10:110)
#'
#' # this will fail the check both ends
#' \dontrun{
#' recipe(slack_df) %>%
#' check_range(x) %>%
#' prep() %>%
#' bake(slack_new_data)
#' }
#'
#' # this will fail the check only at the upper end
#' \dontrun{
#' recipe(slack_df) %>%
#' check_range(x, slack_prop = c(0.1, 0.05)) %>%
#' prep() %>%
#' bake(slack_new_data)
#' }
#'
#' # give a warning instead of an error
#' \dontrun{
#' recipe(slack_df) %>%
#' check_range(x, warn = TRUE) %>%
#' prep() %>%
#' bake(slack_new_data)
#' }
check_range <-
function(recipe,
...,
role = NA,
skip = FALSE,
trained = FALSE,
slack_prop = 0.05,
warn = FALSE,
lower = NULL,
upper = NULL,
id = rand_id("range_check_")) {
add_check(
recipe,
check_range_new(
terms = enquos(...),
role = role,
skip = skip,
trained = trained,
warn = warn,
lower = lower,
upper = upper,
slack_prop = slack_prop,
id = id
)
)
}
## Initializes a new object
check_range_new <-
function(terms, role, skip, trained, slack_prop, warn, lower, upper, id) {
check(
subclass = "range",
terms = terms,
role = role,
skip = skip,
trained = trained,
warn = warn,
lower = lower,
upper = upper,
slack_prop = slack_prop,
id = id
)
}
prep.check_range <- function(x,
training,
info = NULL,
...) {
col_names <- recipes_eval_select(x$terms, training, info)
## TODO add informative error for nonnumerics
lower_vals <- vapply(training[, col_names], min, c(min = 1),
na.rm = TRUE
)
upper_vals <- vapply(training[, col_names], max, c(max = 1),
na.rm = TRUE
)
check_range_new(
terms = x$terms,
role = x$role,
trained = TRUE,
skip = x$skip,
warn = x$warn,
lower = lower_vals,
upper = upper_vals,
slack_prop = x$slack_prop,
id = x$id
)
}
range_check_func <- function(x,
lower,
upper,
slack_prop = 0.05,
warn = FALSE,
colname = "x") {
stopifnot(
is.numeric(slack_prop),
is.numeric(x)
)
min_x <- min(x)
max_x <- max(x)
msg <- NULL
if (length(slack_prop) == 1) {
lower_allowed <- lower - ((upper - lower) * slack_prop)
upper_allowed <- upper + ((upper - lower) * slack_prop)
} else if (length(slack_prop) == 2) {
lower_allowed <- lower - ((upper - lower) * slack_prop[1])
upper_allowed <- upper + ((upper - lower) * slack_prop[2])
} else {
rlang::abort("slack_prop should be of length 1 or of length 2")
}
if (min_x < lower_allowed & max_x > upper_allowed) {
msg <- paste0(
"min ", colname, " is ", min_x, ", lower bound is ",
lower_allowed, ", max x is ", max_x, ", upper bound is ",
upper_allowed
)
} else if (min_x < lower_allowed) {
msg <- paste0(
"min ", colname, " is ", min_x, ", lower bound is ",
lower_allowed
)
} else if (max_x > upper_allowed) {
msg <- paste0(
"max ", colname, " is ", max_x, ", upper bound is ",
upper_allowed
)
}
if (warn & !is.null(msg)) {
rlang::warn(msg)
} else if (!is.null(msg)) {
rlang::abort(msg)
}
}
bake.check_range <- function(object,
new_data,
...) {
col_names <- names(object$lower)
for (i in seq_along(col_names)) {
colname <- col_names[i]
range_check_func(
new_data[[colname]],
object$lower[colname],
object$upper[colname],
object$slack_prop,
object$warn,
colname
)
}
new_data
}
print.check_range <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Checking range of "
print_step(names(x$lower), x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.check_range <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = names(x$lower))
} else {
res <- tibble(terms = sel2char(x$terms))
}
res$id <- x$id
res
}