forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathohem_cross_entropy_loss.py
102 lines (86 loc) · 3.97 KB
/
ohem_cross_entropy_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
@manager.LOSSES.add_component
class OhemCrossEntropyLoss(nn.Layer):
"""
Implements the ohem cross entropy loss function.
Args:
thresh (float, optional): The threshold of ohem. Default: 0.7.
min_kept (int, optional): The min number to keep in loss computation. Default: 10000.
ignore_index (int64, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. Default ``255``.
"""
def __init__(self, thresh=0.7, min_kept=10000, ignore_index=255):
super(OhemCrossEntropyLoss, self).__init__()
self.thresh = thresh
self.min_kept = min_kept
self.ignore_index = ignore_index
self.EPS = 1e-5
def forward(self, logit, label):
"""
Forward computation.
Args:
logit (Tensor): Logit tensor, the data type is float32, float64. Shape is
(N, C), where C is number of classes, and if shape is more than 2D, this
is (N, C, D1, D2,..., Dk), k >= 1.
label (Tensor): Label tensor, the data type is int64. Shape is (N), where each
value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
(N, D1, D2,..., Dk), k >= 1.
"""
if len(label.shape) != len(logit.shape):
label = paddle.unsqueeze(label, 1)
# get the label after ohem
n, c, h, w = logit.shape
label = label.reshape((-1, )).astype('int64')
valid_mask = (label != self.ignore_index).astype('int64')
num_valid = valid_mask.sum()
label = label * valid_mask
prob = F.softmax(logit, axis=1)
prob = prob.transpose((1, 0, 2, 3)).reshape((c, -1))
if self.min_kept < num_valid and num_valid > 0:
# let the value which ignored greater than 1
prob = prob + (1 - valid_mask)
# get the prob of relevant label
label_onehot = F.one_hot(label, c)
label_onehot = label_onehot.transpose((1, 0))
prob = prob * label_onehot
prob = paddle.sum(prob, axis=0)
threshold = self.thresh
if self.min_kept > 0:
index = prob.argsort()
if hasattr(paddle.Tensor, "contiguous"):
threshold_index = index[min(len(index), self.min_kept) - 1].contiguous()
else:
threshold_index = index[min(len(index), self.min_kept) - 1]
threshold_index = int(threshold_index)
if prob[threshold_index] > self.thresh:
threshold = prob[threshold_index]
kept_mask = (prob < threshold).astype('int64')
label = label * kept_mask
valid_mask = valid_mask * kept_mask
# make the invalid region as ignore
label = label + (1 - valid_mask) * self.ignore_index
label = label.reshape((n, 1, h, w))
valid_mask = valid_mask.reshape((n, 1, h, w)).astype('float32')
loss = F.softmax_with_cross_entropy(
logit, label, ignore_index=self.ignore_index, axis=1)
loss = loss * valid_mask
avg_loss = paddle.mean(loss) / (paddle.mean(valid_mask) + self.EPS)
label.stop_gradient = True
valid_mask.stop_gradient = True
return avg_loss