forked from VITA-Group/DP-OPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdln.py
436 lines (392 loc) · 21.2 KB
/
dln.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
from transformers import LlamaForCausalLM
import torch
from tqdm import trange
import numpy as np
from typing import Union, List, Dict
from utils.template import BwdDemosTemplate, DemosTemplate, GenerationTemplate, BackwardGenTemplate, get_bwd_template
from utils.data import sample_demos
from utils.ensemble import ensemble_generate
from utils.dp import LDGumbelMechanism, DPExpenseOverflow, NotFoundLDTop1
from .evaluate import Evaluator
class InstructGenerator(object):
def __init__(self, model: LlamaForCausalLM, tokenizer, device, max_new_tokens: int, label_words,
instruct_type, ensemble_gen=False, disable_att_mask=False, gen_batch_size=0, do_sample=True, gen_temperature=0.9,
rep_penalty=1.,
dp_engine=None, balance_demos=False) -> None:
if 'mpt' in instruct_type:
sys_intro = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n"
meta_template = GenerationTemplate(
sys_intro + "## Instruction:\n" \
"I gave a friend a instruction. Based on the instruction they produced " \
"the following input-output pairs:\n\n\n[full_DEMO]\n\n" \
"### Response:\n" \
"The instruction was to [APE]")
demo_template = DemosTemplate('## Input: [INPUT]\n## Output: [OUTPUT]')
elif instruct_type == 'vicuna':
meta_template = GenerationTemplate("I gave a friend a instruction. Based on the instruction they produced " \
"the following input-output pairs:\n\n\n[full_DEMO]\n\n\nThe instruction was to [APE]")
demo_template = DemosTemplate('Input: [INPUT]\nOutput: [OUTPUT]')
else:
raise NotImplementedError(f"instruct_type: {instruct_type}")
self.demo_template = demo_template
self.meta_template = meta_template
self.model = model
self.tokenizer = tokenizer
self.device = device
self.max_new_tokens = max_new_tokens
self.label_words = label_words
self.ensemble_gen = ensemble_gen
self.disable_att_mask = disable_att_mask
self.gen_batch_size = gen_batch_size
self.do_sample = do_sample
self.gen_temperature = gen_temperature
self.rep_penalty = rep_penalty
self.balance_demos = balance_demos
# dp
self.dp_engine = dp_engine
def generate_prompt(self, num_demos, dataset, rng, num_prompt=1, num_meta_prompt=None):
"""
Inputs:
num_demos (int): Number of demos for each meta prompt.
num_prompt (int): Number of prompts to be generated.
num_meta_prompt (int): Number of meta-prompts to be construted from dataset. By default, None means num_meta_prompt=num_prompt.
"""
if num_meta_prompt is None:
num_meta_prompt = num_prompt
# get demos for prompt
meta_prompts = []
all_demos = sample_demos(
dataset, num_meta_prompt * num_demos, self.label_words,
make_text_target=False, rng=rng, balance=self.balance_demos)
all_inputs, all_targets = all_demos
for i_meta_prompt in range(num_meta_prompt):
inputs = all_inputs[i_meta_prompt*num_demos:(i_meta_prompt+1)*num_demos]
targets = all_targets[i_meta_prompt*num_demos:(i_meta_prompt+1)*num_demos] # target is numerical
full_demo = self.demo_template.fill([inputs, targets])
meta_prompt = self.meta_template.fill(full_demo)
print(f"\n>>> Meta prompt #{i_meta_prompt}:\n[START]{meta_prompt}[END]")
meta_prompts.append(meta_prompt)
# generate
instructs = self.forward_generate_prompt(meta_prompts, num_prompt)
# post-process intructs
processed_instructs = []
for i_meta_prompt, instruct in zip(range(len(instructs)), instructs):
inputs = all_inputs[i_meta_prompt*num_demos:(i_meta_prompt+1)*num_demos]
targets = all_targets[i_meta_prompt*num_demos:(i_meta_prompt+1)*num_demos] # target is numerical
demos = [inputs, targets]
privacy_leaked, leakded_demo = exam_privacy_leakage(instruct, demos)
instruct = instruct.strip()
instruct = instruct.replace('\n', ' ')
print(f"\n>>> Generated instruct:\n", '[START]'+ instruct + '[END]')
if privacy_leaked:
print(f"[ALERT] Dump instruct. because privacy leaked for demo: {leakded_demo}.")
instruct = None
else:
processed_instructs.append(instruct)
return processed_instructs, all_demos
def forward_generate_prompt(
self, meta_prompts: Union[str, List[str]], num_prompts: int,
max_new_tokens=None, gen_init='', verbose=True, decode_special_tokens=False,
reraise_dp_fail=False):
if not isinstance(meta_prompts, list):
meta_prompts = [meta_prompts]
if max_new_tokens is None:
max_new_tokens = self.max_new_tokens
if len(gen_init) > 0:
base_meta_prompts = [meta_prompt.replace('[APE]', '') for meta_prompt in meta_prompts]
base_input_ids = self.tokenizer(base_meta_prompts, return_tensors='pt', padding=True).input_ids
gen_init_id_len = len(base_input_ids[0])
else:
gen_init_id_len = None
meta_prompts = [meta_prompt.replace('[APE]', gen_init) for meta_prompt in meta_prompts] # forward next word
tokenized = self.tokenizer(meta_prompts, return_tensors='pt', padding=True) # , padding_side='left'
input_ids = tokenized.input_ids
if gen_init_id_len is None:
gen_init_id_len = len(input_ids[0])
attention_mask = tokenized.attention_mask
if self.ensemble_gen:
output_ids = []
try:
for i_meta_prompt in trange(num_prompts, desc='sample prompt', disable=not verbose):
smp_output_ids = ensemble_generate(
self.model,
input_ids.to(self.device),
attention_mask.to(self.device) if not self.disable_att_mask else None,
self.tokenizer.eos_token_id,
self.tokenizer.pad_token_id,
do_sample=self.do_sample,
# based on the configs/default.yaml of APE
temperature=self.gen_temperature, # 0.9,
repetition_penalty=self.rep_penalty, # based on https://arxiv.org/pdf/1909.05858.pdf (b/f Sec 4.2)
max_new_tokens=max_new_tokens, # 50
batch_size=self.gen_batch_size,
dp_engine=self.dp_engine,
)
output_ids.append(smp_output_ids[0])
instruct = self.tokenizer.decode(
smp_output_ids[0][input_ids.size(1):], skip_special_tokens=True, spaces_between_special_tokens=False
)
if verbose:
print(f"generated instruct:\n[START]{instruct}[END]")
if self.dp_engine is not None:
self.dp_engine.check_dp_budget(verbose=verbose)
except DPExpenseOverflow:
eps, delta = self.dp_engine.get_dp_expense()
if verbose:
print(f"Reach target DP at {i_meta_prompt}-th prompt, eps={eps:.4f}, delta={delta:4f}")
if reraise_dp_fail:
raise DPExpenseOverflow()
else:
assert len(meta_prompts) == num_prompts, "num_prompts should be the same as the size of meta prompts."
output_ids = self.model.generate(
input_ids.to(self.device),
attention_mask=attention_mask.to(self.device) if not self.disable_att_mask else None,
do_sample=self.do_sample,
# based on the configs/default.yaml of APE
temperature=self.gen_temperature,
repetition_penalty=1.0, # not found corresponding
max_new_tokens=max_new_tokens, # 50
)
output_ids = [
output_ids_ if self.model.config.is_encoder_decoder else output_ids_[gen_init_id_len:]
for output_ids_ in output_ids
]
out_prompts = self.tokenizer.batch_decode(
output_ids,
skip_special_tokens=not decode_special_tokens, #
spaces_between_special_tokens=False
)
return out_prompts
def exam_privacy_leakage(instruct, demos):
privacy_leaked, leakded_demo = False, None
for input_ in demos[0]:
if input_ in instruct:
privacy_leaked = True
leakded_demo = input_
break
return privacy_leaked, leakded_demo
class BackwardInstructGenerator(InstructGenerator):
"""Generate instruct with backward."""
def __init__(self, model: LlamaForCausalLM, tokenizer, device, max_new_tokens: int, label_words,
instruct_type, ensemble_gen=False, disable_att_mask=False, gen_batch_size=0, do_sample=True, gen_temperature=0.9,
rep_penalty=1.,
dp_engine: LDGumbelMechanism=None,
balance_demos=False, tokenwise_gen=False, privacy_instruct=-1) -> None:
meta_template, suc_demo_template, fail_demo_template = get_bwd_template(instruct_type, privacy_instruct=privacy_instruct)
self.suc_demo_template = suc_demo_template # type: BwdDemosTemplate
self.fail_demo_template = fail_demo_template # type: BwdDemosTemplate
self.meta_template = meta_template # type: BackwardGenTemplate
self.model = model
self.tokenizer = tokenizer
self.device = device
self.max_new_tokens = max_new_tokens
self.label_words = label_words
self.ensemble_gen = ensemble_gen
self.disable_att_mask = disable_att_mask
self.gen_batch_size = gen_batch_size
self.balance_demos = balance_demos
self.bwd_messages = [
"Clarify the instruction by adding few words or a short sentence. Be concise",
"Improve the instruction by providing examples on how to solve the task. Be concise.",
"Shorten the instruction by removing superflous words or sentences.",
"Rewrite the instruction by providing detailed information to avoid ambiguity. Be concise",
]
# dp
self.dp_engine = dp_engine
self.do_sample = do_sample
self.gen_temperature = gen_temperature
self.rep_penalty = rep_penalty
self.tokenwise_gen = tokenwise_gen
# log
self._verbose_cnt = 1
def iterative_generate(self, init_instruct, num_demos, dataset, rng: np.random.RandomState, evaluator: Evaluator, num_prompt=1, num_meta_prompt=None, iid_instruct=False, **kwargs):
"""If iid_instruct is True, will use last instruct to update meta prompts."""
if iid_instruct:
# Since instruct is not changed, the sample predictions are constant and can be computed.
dataset = self.dln_fwd_pass(init_instruct, dataset, evaluator)
if num_meta_prompt is None:
num_meta_prompt = num_prompt
cur_instruct = init_instruct
generated_instructs, used_demos = [], [] # will not keep used demos
for i_prompt in range(num_prompt):
print(f"[Iter {i_prompt}/{num_prompt}] generating prompt")
_generated_instructs, _used_demos = self.generate_instruct_bwd(cur_instruct, num_demos, dataset, rng, evaluator, num_prompt=1, num_meta_prompt=num_meta_prompt, **kwargs)
generated_instructs.extend(_generated_instructs)
# used_demos.extend(_used_demos)
if not iid_instruct:
cur_instruct = _generated_instructs[0]
assert 'prediction' not in dataset[0], "For not iid_instruct, the demo predictions have to regenerated every iter."
if self.dp_engine is not None:
if not self.dp_engine.check_dp_budget(raise_error=False):
break
return generated_instructs, used_demos
def dln_fwd_pass(self, cur_instruct, dataset: List[Dict], evaluator: Evaluator):
assert isinstance(dataset, list), "require List[Dict] type."
assert 'prediction' not in dataset[0], "the dataset has been predicted. Make sure a raw dataset is inputed."
# forward pass on all samples.
def process(example):
# we will add text entry but also keep the old entry which will be used)
new_ex = {k: v for k, v in example.items()}
new_ex['text'] = example[evaluator.eval_template.input_key]
return new_ex
new_dataset = [process(d) for d in dataset]
# input_key=evaluator.eval_template.input_key
acc, loss, losses, all_pred_labels, all_targets = evaluator.evaluate_prompt(new_dataset, cur_instruct, return_all=True, shuffle=False, desc=f"dln-fwd")
for i, d in enumerate(new_dataset):
d['prediction'] = all_pred_labels[i]
assert 'prediction' in new_dataset[0]
return new_dataset
def generate_instruct_bwd(self, cur_instruct, num_demos, dataset,
rng: np.random.RandomState, evaluator: Evaluator,
num_prompt=1,
**kwargs):
if self.tokenwise_gen:
assert num_prompt == 1
return self._generate_instruct_bwd_tokwise(
cur_instruct, num_demos, dataset, rng, evaluator,
**kwargs)
else:
return self._generate_instruct_bwd(
cur_instruct, num_demos, dataset, rng, evaluator,
num_prompt=num_prompt, **kwargs)
def _generate_instruct_bwd_tokwise(
self, cur_instruct, num_demos, dataset,
rng: np.random.RandomState, evaluator: Evaluator, **kwargs):
"""When generate each token, we will sample a new meta-prompt."""
gen_instruct = ''
cur_len = len(gen_instruct)
max_retry = 5
if self.dp_engine is not None:
dp_fail_mode = self.dp_engine.fail_mode
if dp_fail_mode != 'rand':
# enforce the engine to raise error such that we can handle the failure here.
self.dp_engine.fail_mode = 'raise'
print(f"Generating: [START]", end='', flush=True)
# for i_token in range(self.max_new_tokens):
i_token = 0
per_token_max_retry = 1
all_demos = []
while i_token < self.max_new_tokens:
kwargs['decode_special_tokens'] = True
kwargs['reraise_dp_fail'] = True
# generate one token at a time.
try:
processed_instructs, all_demos = self._generate_instruct_bwd(
cur_instruct, num_demos, dataset,
rng, evaluator, num_prompt=1, max_new_tokens=1,
gen_init=gen_instruct, do_post_process=False,
**kwargs)
gen_instruct = processed_instructs[0]
print(gen_instruct[cur_len:], end='', flush=True)
cur_len = len(gen_instruct)
if self.tokenizer.eos_token in gen_instruct:
# remove eos token.
gen_instruct = gen_instruct.replace(self.tokenizer.eos_token, '')
break
except DPExpenseOverflow:
eps, delta = self.dp_engine.get_dp_expense()
print(f"Reach target DP at {i_token}-th prompt, eps={eps:.4f}, delta={delta:4f}")
break
except NotFoundLDTop1:
if dp_fail_mode == 'retry':
if max_retry > 0 and per_token_max_retry > 0:
print(f"\n! Fail with LD at {i_token}-th token. Retry....")
max_retry -= 1
per_token_max_retry -= 1
continue
else:
print(f"\n! Fail with LD at {i_token}-th token. Stop...")
break
elif dp_fail_mode == 'rand':
continue
elif dp_fail_mode == 'stop':
break
else:
raise RuntimeError(f"Unknown dp_fail_mode: {dp_fail_mode}")
i_token += 1
per_token_max_retry = 1
print(f"[END]")
instruct = gen_instruct
# privacy_leaked, leakded_demo = exam_privacy_leakage(instruct, all_demos)
instruct = instruct.strip()
instruct = instruct.replace('\n', ' ')
if self.dp_engine is not None:
self.dp_engine.fail_mode = dp_fail_mode
return [instruct], all_demos
def _generate_instruct_bwd(self, cur_instruct, num_demos, dataset,
rng: np.random.RandomState, evaluator: Evaluator,
num_prompt=1, num_meta_prompt=None, verbose=False,
max_new_tokens=None, gen_init='', do_post_process=True,
decode_special_tokens=False, reraise_dp_fail=False):
"""
Inputs:
num_demos (int): Number of demos for each meta prompt.
num_prompt (int): Number of prompts to be generated. If not ensemble,
this is the generation per meta_prompt, otherwise total prompts.
num_meta_prompt (int): Number of meta-prompts to be construted from dataset. By default, None means num_meta_prompt=num_prompt.
"""
if num_meta_prompt is None:
num_meta_prompt = num_prompt
# prepare predicted demos for meta prompts.
all_demos, demo_subset = sample_demos(
dataset, num_meta_prompt * num_demos, self.label_words,
make_text_target=False, rng=rng, return_subset=True,
input_key=evaluator.eval_template.input_key,
balance=self.balance_demos, poisson=self.dp_engine is not None)
all_inputs, all_targets = all_demos
if 'prediction' in dataset[0]:
# extract predicted labels.
all_pred_labels = [d['prediction'] for d in demo_subset]
else:
# calculate predicted labels.
acc, loss, losses, all_pred_labels, all_targets = evaluator.evaluate_prompt(demo_subset, cur_instruct, return_all=True, shuffle=False, desc=f"dln-fwd")
batch_meta_prompts = []
for i_meta_prompt in range(num_meta_prompt):
start_idx, end_idx = i_meta_prompt*num_demos, (i_meta_prompt+1)*num_demos
pred_labels = all_pred_labels[start_idx:end_idx]
targets = all_targets[start_idx:end_idx]
inputs = all_inputs[start_idx:end_idx]
# Incorporate the pred labels (pred_labels) versus targets.
assert len(pred_labels) == len(targets)
suc_bwd_infos, fail_bwd_infos = [], []
for pred_label, target, input_text in zip(pred_labels, targets, inputs):
data_dict = {'input': input_text, 'output': self.label_words[pred_label], 'target': self.label_words[target]}
if target == pred_label:
suc_bwd_infos.append(data_dict)
else:
fail_bwd_infos.append(data_dict)
# Prepare meta prompt
full_suc_demo = self.suc_demo_template.fill(suc_bwd_infos)
full_fail_demo = self.fail_demo_template.fill(fail_bwd_infos)
bwd_msg = rng.choice(self.bwd_messages, 1)[0]
meta_prompt = self.meta_template.fill(cur_instruct, full_suc_demo, full_fail_demo, bwd_msg)
if verbose or self._verbose_cnt > 0:
print(f"\n>>> Meta prompt #{i_meta_prompt}:\n[START]{meta_prompt}[END]")
self._verbose_cnt -= 1
batch_meta_prompts.append(meta_prompt)
# Generate prompt
instructs = self.forward_generate_prompt(
batch_meta_prompts, num_prompt, max_new_tokens=max_new_tokens,
gen_init=gen_init, verbose=verbose, decode_special_tokens=decode_special_tokens,
reraise_dp_fail=reraise_dp_fail)
processed_instructs = []
for i_meta_prompt, instruct in zip(range(len(instructs)), instructs):
if self.ensemble_gen:
demos = [all_inputs, all_targets]
else:
inputs = all_inputs[i_meta_prompt*num_demos:(i_meta_prompt+1)*num_demos]
targets = all_targets[i_meta_prompt*num_demos:(i_meta_prompt+1)*num_demos] # target is numerical
demos = [inputs, targets]
if do_post_process:
privacy_leaked, leakded_demo = exam_privacy_leakage(instruct, demos)
instruct = instruct.strip()
instruct = instruct.replace('\n', ' ')
print(f"\n>>> Generated instruct:\n", '[START]'+ instruct + '[END]')
else:
privacy_leaked = False
if privacy_leaked:
print(f"[ALERT] Dump instruct. because privacy leaked for demo: {leakded_demo}.")
instruct = None
else:
processed_instructs.append(instruct)
return processed_instructs, all_demos