forked from lxtGH/OMG-Seg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_cls.py
190 lines (164 loc) · 6.79 KB
/
gen_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import os
import os.path as osp
from typing import List, Optional
import torch
import torch.distributed as dist
import mmengine
from mmengine import MMLogger
from mmengine.config import Config, DictAction
from mmdet.engine.hooks.utils import trigger_visualization_hook
from mmdet.registry import MODELS, DATASETS
from mmdet.utils import setup_cache_size_limit_of_dynamo
from mmengine.dist import get_dist_info
from ext.templates import VILD_PROMPT
def split_label(x: str) -> List[str]:
x = x.replace('_or_', ',')
x = x.replace('/', ',')
x = x.replace('_', ' ')
x = x.lower()
x = x.split(',')
x = [_x.strip() for _x in x]
return x
NUM_BATCH = 256
# TODO: support fuse_conv_bn and format_only
def parse_args():
parser = argparse.ArgumentParser(
description='MMDet test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('--checkpoint', default=None, help='checkpoint file')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing evaluation metrics')
parser.add_argument(
'--out',
type=str,
help='dump predictions to a pickle file for offline evaluation')
parser.add_argument(
'--show', action='store_true', help='show prediction results')
parser.add_argument(
'--show-dir',
help='directory where painted images will be saved. '
'If specified, it will be automatically saved '
'to the work_dir/timestamp/show_dir')
parser.add_argument(
'--wait-time', type=float, default=2, help='the interval of show (s)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--tta', action='store_true')
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
# will pass the `--local-rank` parameter to `tools/train.py` instead
# of `--local_rank`.
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
# Reduce the number of repeated compilations and improve
# testing speed.
setup_cache_size_limit_of_dynamo()
# load config
cfg = Config.fromfile(args.config)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
cfg.load_from = args.checkpoint
if args.show or args.show_dir:
cfg = trigger_visualization_hook(cfg, args)
logger = MMLogger.get_current_instance()
model = MODELS.build(cfg.model.backbone)
model = model.get_text_model()
model.init_weights()
dataset_cfg = copy.deepcopy(cfg.train_dataloader.dataset)
dataset_cfg.update(lazy_init=True)
dataset = DATASETS.build(dataset_cfg)
classes = dataset.metainfo['classes']
logger.info(f"Dataset classes:\n{classes}")
descriptions = []
candidates = []
for cls_name in classes:
labels_per_cls = split_label(cls_name)
candidates.append(len(labels_per_cls))
for label in labels_per_cls:
for template in VILD_PROMPT:
description = template.format(label)
descriptions.append(description)
rank, world_size = get_dist_info()
if world_size > 1:
bs = len(descriptions)
local_bs = bs // dist.get_world_size()
if bs % dist.get_world_size() != 0:
local_bs += 1
local_descriptions = descriptions[rank * local_bs: (rank + 1) * local_bs]
local_feat = model(local_descriptions)
feat_list: List[Optional[torch.Tensor]] = [None for _ in range(world_size)]
dist.all_gather_object(feat_list, local_feat.to(device='cpu'))
features = torch.cat(feat_list)
else:
bs = len(descriptions)
local_bs = bs // NUM_BATCH
if bs % NUM_BATCH != 0:
local_bs += 1
feat_list = []
for i in range(NUM_BATCH):
local_descriptions = descriptions[i * local_bs: (i + 1) * local_bs]
local_feat = model(local_descriptions).to(device='cpu')
feat_list.append(local_feat)
features = torch.cat(feat_list)
if rank == 0:
dim = features.shape[-1]
candidate_tot = sum(candidates)
candidate_max = max(candidates)
features = features.reshape(candidate_tot, len(VILD_PROMPT), dim)
features = features / features.norm(dim=-1, keepdim=True)
features = features.mean(dim=1, keepdims=False)
features = features / features.norm(dim=-1, keepdim=True)
cur_pos = 0
classifier = []
for candidate in candidates:
cur_feat = features[cur_pos:cur_pos + candidate]
if candidate < candidate_max:
cur_feat = torch.cat([cur_feat, cur_feat[0].repeat(candidate_max - candidate, 1)])
classifier.append(cur_feat)
cur_pos += candidate
classifier = torch.stack(classifier)
embd_path = os.path.join(os.path.expanduser('~/.cache'), 'embd')
dataset_name = dataset.dataset_name if hasattr(dataset, 'dataset_name') else dataset.__class__.__name__
save_path = os.path.join(embd_path, f'{model.model_name}_{dataset_name}.pth')
mmengine.mkdir_or_exist(os.path.dirname(save_path))
classifier_to_save = classifier
torch.save(classifier_to_save, save_path)
logger.info(f"The size of classifier is:\n{classifier_to_save.size()}")
logger.info(f"Saved to {save_path}")
else:
pass
if world_size > 1:
dist.barrier()
logger.info("Done!")
if __name__ == '__main__':
main()