forked from liuliu/ccv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathccv_icf.c
2063 lines (1991 loc) · 82.5 KB
/
ccv_icf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "ccv.h"
#include "ccv_internal.h"
#ifdef HAVE_GSL
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#endif
#ifdef USE_DISPATCH
#include <dispatch/dispatch.h>
#endif
const ccv_icf_param_t ccv_icf_default_params = {
.min_neighbors = 2,
.threshold = 0,
.step_through = 2,
.flags = 0,
.interval = 8,
};
// cube root approximation using bit hack for 32-bit float
// provides a very crude approximation
static inline float cbrt_5_f32(float f)
{
unsigned int* p = (unsigned int*)(&f);
*p = *p / 3 + 709921077;
return f;
}
// iterative cube root approximation using Halley's method (float)
static inline float cbrta_halley_f32(const float a, const float R)
{
const float a3 = a * a * a;
const float b = a * (a3 + R + R) / (a3 + a3 + R);
return b;
}
// Code based on
// http://metamerist.com/cbrt/cbrt.htm
// cube root approximation using 2 iterations of Halley's method (float)
// this is expected to be ~2.5x times faster than std::pow(x, 3)
static inline float fast_cube_root(const float d)
{
float a = cbrt_5_f32(d);
a = cbrta_halley_f32(a, d);
return cbrta_halley_f32(a, d);
}
static inline void _ccv_rgb_to_luv(const float r, const float g, const float b, float* pl, float* pu, float* pv)
{
const float x = 0.412453f * r + 0.35758f * g + 0.180423f * b;
const float y = 0.212671f * r + 0.71516f * g + 0.072169f * b;
const float z = 0.019334f * r + 0.119193f * g + 0.950227f * b;
const float x_n = 0.312713f, y_n = 0.329016f;
const float uv_n_divisor = -2.f * x_n + 12.f * y_n + 3.f;
const float u_n = 4.f * x_n / uv_n_divisor;
const float v_n = 9.f * y_n / uv_n_divisor;
const float uv_divisor = ccv_max((x + 15.f * y + 3.f * z), FLT_EPSILON);
const float u = 4.f * x / uv_divisor;
const float v = 9.f * y / uv_divisor;
const float y_cube_root = fast_cube_root(y);
const float l_value = ccv_max(0.f, ((116.f * y_cube_root) - 16.f));
const float u_value = 13.f * l_value * (u - u_n);
const float v_value = 13.f * l_value * (v - v_n);
// L in [0, 100], U in [-134, 220], V in [-140, 122]
*pl = l_value * (255.f / 100.f);
*pu = (u_value + 134.f) * (255.f / (220.f + 134.f));
*pv = (v_value + 140.f) * (255.f / (122.f + 140.f));
}
// generating the integrate channels features (which combines the grayscale, gradient magnitude, and 6-direction HOG)
void ccv_icf(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type)
{
int ch = CCV_GET_CHANNEL(a->type);
assert(ch == 1 || ch == 3);
int nchr = (ch == 1) ? 8 : 10;
ccv_declare_derived_signature(sig, a->sig != 0, ccv_sign_with_literal("ccv_icf"), a->sig, CCV_EOF_SIGN);
ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, a->rows, a->cols, CCV_32F | nchr, CCV_32F | nchr, sig);
ccv_object_return_if_cached(, db);
ccv_dense_matrix_t* ag = 0;
ccv_dense_matrix_t* mg = 0;
ccv_gradient(a, &ag, 0, &mg, 0, 1, 1);
float* agp = ag->data.f32;
float* mgp = mg->data.f32;
float* dbp = db->data.f32;
ccv_zero(db);
int i, j, k;
unsigned char* a_ptr = a->data.u8;
float magnitude_scaling = 1 / sqrtf(2); // regularize it to 0~1
if (ch == 1)
{
#define for_block(_, _for_get) \
for (i = 0; i < a->rows; i++) \
{ \
for (j = 0; j < a->cols; j++) \
{ \
dbp[0] = _for_get(a_ptr, j, 0); \
dbp[1] = mgp[j] * magnitude_scaling; \
float agr = (ccv_clamp(agp[j] <= 180 ? agp[j] : agp[j] - 180, 0, 179.99) / 180.0) * 6; \
int ag0 = (int)agr; \
int ag1 = ag0 < 5 ? ag0 + 1 : 0; \
agr = agr - ag0; \
dbp[2 + ag0] = dbp[1] * (1 - agr); \
dbp[2 + ag1] = dbp[1] * agr; \
dbp += 8; \
} \
a_ptr += a->step; \
agp += a->cols; \
mgp += a->cols; \
}
ccv_matrix_getter(a->type, for_block);
#undef for_block
} else {
// color one, luv, gradient magnitude, and 6-direction HOG
#define for_block(_, _for_get) \
for (i = 0; i < a->rows; i++) \
{ \
for (j = 0; j < a->cols; j++) \
{ \
_ccv_rgb_to_luv(_for_get(a_ptr, j * ch, 0) / 255.0, \
_for_get(a_ptr, j * ch + 1, 0) / 255.0, \
_for_get(a_ptr, j * ch + 2, 0) / 255.0, \
dbp, dbp + 1, dbp + 2); \
float agv = agp[j * ch]; \
float mgv = mgp[j * ch]; \
for (k = 1; k < ch; k++) \
{ \
if (mgp[j * ch + k] > mgv) \
{ \
mgv = mgp[j * ch + k]; \
agv = agp[j * ch + k]; \
} \
} \
dbp[3] = mgv * magnitude_scaling; \
float agr = (ccv_clamp(agv <= 180 ? agv : agv - 180, 0, 179.99) / 180.0) * 6; \
int ag0 = (int)agr; \
int ag1 = ag0 < 5 ? ag0 + 1 : 0; \
agr = agr - ag0; \
dbp[4 + ag0] = dbp[3] * (1 - agr); \
dbp[4 + ag1] = dbp[3] * agr; \
dbp += 10; \
} \
a_ptr += a->step; \
agp += a->cols * ch; \
mgp += a->cols * ch; \
}
ccv_matrix_getter(a->type, for_block);
#undef for_block
}
ccv_matrix_free(ag);
ccv_matrix_free(mg);
}
static inline float _ccv_icf_run_feature(ccv_icf_feature_t* feature, float* ptr, int cols, int ch, int x, int y)
{
float c = feature->beta;
int q;
for (q = 0; q < feature->count; q++)
c += (ptr[(feature->sat[q * 2 + 1].x + x + 1 + (feature->sat[q * 2 + 1].y + y + 1) * cols) * ch + feature->channel[q]] - ptr[(feature->sat[q * 2].x + x + (feature->sat[q * 2 + 1].y + y + 1) * cols) * ch + feature->channel[q]] + ptr[(feature->sat[q * 2].x + x + (feature->sat[q * 2].y + y) * cols) * ch + feature->channel[q]] - ptr[(feature->sat[q * 2 + 1].x + x + 1 + (feature->sat[q * 2].y + y) * cols) * ch + feature->channel[q]]) * feature->alpha[q];
return c;
}
static inline int _ccv_icf_run_weak_classifier(ccv_icf_decision_tree_t* weak_classifier, float* ptr, int cols, int ch, int x, int y)
{
float c = _ccv_icf_run_feature(weak_classifier->features, ptr, cols, ch, x, y);
if (c > 0)
{
if (!(weak_classifier->pass & 0x1))
return 1;
return _ccv_icf_run_feature(weak_classifier->features + 2, ptr, cols, ch, x, y) > 0;
} else {
if (!(weak_classifier->pass & 0x2))
return 0;
return _ccv_icf_run_feature(weak_classifier->features + 1, ptr, cols, ch, x, y) > 0;
}
}
#ifdef HAVE_GSL
static void _ccv_icf_randomize_feature(gsl_rng* rng, ccv_size_t size, int minimum, ccv_icf_feature_t* feature, int grayscale)
{
feature->count = gsl_rng_uniform_int(rng, CCV_ICF_SAT_MAX) + 1;
assert(feature->count <= CCV_ICF_SAT_MAX);
int i;
feature->beta = 0;
for (i = 0; i < feature->count; i++)
{
int x0, y0, x1, y1;
do {
x0 = gsl_rng_uniform_int(rng, size.width);
x1 = gsl_rng_uniform_int(rng, size.width);
y0 = gsl_rng_uniform_int(rng, size.height);
y1 = gsl_rng_uniform_int(rng, size.height);
} while ((ccv_max(x0, x1) - ccv_min(x0, x1) + 1) * (ccv_max(y0, y1) - ccv_min(y0, y1) + 1) < (minimum + 1) * (minimum + 1) ||
(ccv_max(x0, x1) - ccv_min(x0, x1) + 1) < minimum ||
(ccv_max(y0, y1) - ccv_min(y0, y1) + 1) < minimum);
feature->sat[i * 2].x = ccv_min(x0, x1);
feature->sat[i * 2].y = ccv_min(y0, y1);
feature->sat[i * 2 + 1].x = ccv_max(x0, x1);
feature->sat[i * 2 + 1].y = ccv_max(y0, y1);
feature->channel[i] = gsl_rng_uniform_int(rng, grayscale ? 8 : 10); // 8-channels for grayscale, and 10-channels for rgb
assert(feature->channel[i] >= 0 && feature->channel[i] < (grayscale ? 8 : 10));
feature->alpha[i] = gsl_rng_uniform(rng) / (float)((feature->sat[i * 2 + 1].x - feature->sat[i * 2].x + 1) * (feature->sat[i * 2 + 1].y - feature->sat[i * 2].y + 1));
}
}
static void _ccv_icf_check_params(ccv_icf_new_param_t params)
{
assert(params.size.width > 0 && params.size.height > 0);
assert(params.deform_shift >= 0);
assert(params.deform_angle >= 0);
assert(params.deform_scale >= 0 && params.deform_scale < 1);
assert(params.feature_size > 0);
assert(params.acceptance > 0 && params.acceptance < 1.0);
}
static ccv_dense_matrix_t* _ccv_icf_capture_feature(gsl_rng* rng, ccv_dense_matrix_t* image, ccv_decimal_pose_t pose, ccv_size_t size, ccv_margin_t margin, float deform_angle, float deform_scale, float deform_shift)
{
float rotate_x = (deform_angle * 2 * gsl_rng_uniform(rng) - deform_angle) * CCV_PI / 180 + pose.pitch;
float rotate_y = (deform_angle * 2 * gsl_rng_uniform(rng) - deform_angle) * CCV_PI / 180 + pose.yaw;
float rotate_z = (deform_angle * 2 * gsl_rng_uniform(rng) - deform_angle) * CCV_PI / 180 + pose.roll;
float scale = gsl_rng_uniform(rng);
// to make the scale evenly distributed, for example, when deforming of 1/2 ~ 2, we want it to distribute around 1, rather than any average of 1/2 ~ 2
scale = (1 + deform_scale * scale) / (1 + deform_scale * (1 - scale));
float scale_ratio = sqrtf((float)(size.width * size.height) / (pose.a * pose.b * 4));
float m00 = cosf(rotate_z) * scale;
float m01 = cosf(rotate_y) * sinf(rotate_z) * scale;
float m02 = (deform_shift * 2 * gsl_rng_uniform(rng) - deform_shift) / scale_ratio + pose.x + (margin.right - margin.left) / scale_ratio - image->cols * 0.5;
float m10 = (sinf(rotate_y) * cosf(rotate_z) - cosf(rotate_x) * sinf(rotate_z)) * scale;
float m11 = (sinf(rotate_y) * sinf(rotate_z) + cosf(rotate_x) * cosf(rotate_z)) * scale;
float m12 = (deform_shift * 2 * gsl_rng_uniform(rng) - deform_shift) / scale_ratio + pose.y + (margin.bottom - margin.top) / scale_ratio - image->rows * 0.5;
float m20 = (sinf(rotate_y) * cosf(rotate_z) + sinf(rotate_x) * sinf(rotate_z)) * scale;
float m21 = (sinf(rotate_y) * sinf(rotate_z) - sinf(rotate_x) * cosf(rotate_z)) * scale;
float m22 = cosf(rotate_x) * cosf(rotate_y);
ccv_dense_matrix_t* b = 0;
ccv_perspective_transform(image, &b, 0, m00, m01, m02, m10, m11, m12, m20, m21, m22);
ccv_dense_matrix_t* resize = 0;
// have 1px border around the grayscale image because we need these to compute correct gradient feature
ccv_size_t scale_size = {
.width = (int)((size.width + margin.left + margin.right + 2) / scale_ratio + 0.5),
.height = (int)((size.height + margin.top + margin.bottom + 2) / scale_ratio + 0.5),
};
assert(scale_size.width > 0 && scale_size.height > 0);
ccv_slice(b, (ccv_matrix_t**)&resize, 0, (int)(b->rows * 0.5 - (size.height + margin.top + margin.bottom + 2) / scale_ratio * 0.5 + 0.5), (int)(b->cols * 0.5 - (size.width + margin.left + margin.right + 2) / scale_ratio * 0.5 + 0.5), scale_size.height, scale_size.width);
ccv_matrix_free(b);
b = 0;
if (scale_ratio > 1)
ccv_resample(resize, &b, 0, size.height + margin.top + margin.bottom + 2, size.width + margin.left + margin.right + 2, CCV_INTER_CUBIC);
else
ccv_resample(resize, &b, 0, size.height + margin.top + margin.bottom + 2, size.width + margin.left + margin.right + 2, CCV_INTER_AREA);
ccv_matrix_free(resize);
return b;
}
typedef struct {
uint8_t correct:1;
double weight;
float rate;
} ccv_icf_example_state_t;
typedef struct {
uint8_t classifier:1;
uint8_t positives:1;
uint8_t negatives:1;
uint8_t features:1;
uint8_t example_state:1;
uint8_t precomputed:1;
} ccv_icf_classifier_cascade_persistence_state_t;
typedef struct {
uint32_t index;
float value;
} ccv_icf_value_index_t;
typedef struct {
ccv_function_state_reserve_field;
int i;
int bootstrap;
ccv_icf_new_param_t params;
ccv_icf_classifier_cascade_t* classifier;
ccv_array_t* positives;
ccv_array_t* negatives;
ccv_icf_feature_t* features;
ccv_size_t size;
ccv_margin_t margin;
ccv_icf_example_state_t* example_state;
uint8_t* precomputed;
ccv_icf_classifier_cascade_persistence_state_t x;
} ccv_icf_classifier_cascade_state_t;
static void _ccv_icf_write_classifier_cascade_state(ccv_icf_classifier_cascade_state_t* state, const char* directory)
{
char filename[1024];
snprintf(filename, 1024, "%s/state", directory);
FILE* w = fopen(filename, "w+");
fprintf(w, "%d %d %d\n", state->line_no, state->i, state->bootstrap);
fprintf(w, "%d %d %d\n", state->params.feature_size, state->size.width, state->size.height);
fprintf(w, "%d %d %d %d\n", state->margin.left, state->margin.top, state->margin.right, state->margin.bottom);
fclose(w);
int i, q;
if (!state->x.positives)
{
snprintf(filename, 1024, "%s/positives", directory);
w = fopen(filename, "wb+");
fwrite(&state->positives->rnum, sizeof(state->positives->rnum), 1, w);
fwrite(&state->positives->rsize, sizeof(state->positives->rsize), 1, w);
for (i = 0; i < state->positives->rnum; i++)
{
ccv_dense_matrix_t* a = (ccv_dense_matrix_t*)ccv_array_get(state->positives, i);
assert(a->rows == state->size.height + state->margin.top + state->margin.bottom + 2 && a->cols == state->size.width + state->margin.left + state->margin.right + 2);
fwrite(a, 1, state->positives->rsize, w);
}
fclose(w);
state->x.positives = 1;
}
if (!state->x.negatives)
{
assert(state->negatives->rsize == state->positives->rsize);
snprintf(filename, 1024, "%s/negatives", directory);
w = fopen(filename, "wb+");
fwrite(&state->negatives->rnum, sizeof(state->negatives->rnum), 1, w);
fwrite(&state->negatives->rsize, sizeof(state->negatives->rsize), 1, w);
for (i = 0; i < state->negatives->rnum; i++)
{
ccv_dense_matrix_t* a = (ccv_dense_matrix_t*)ccv_array_get(state->negatives, i);
assert(a->rows == state->size.height + state->margin.top + state->margin.bottom + 2 && a->cols == state->size.width + state->margin.left + state->margin.right + 2);
fwrite(a, 1, state->negatives->rsize, w);
}
fclose(w);
state->x.negatives = 1;
}
if (!state->x.features)
{
snprintf(filename, 1024, "%s/features", directory);
w = fopen(filename, "w+");
for (i = 0; i < state->params.feature_size; i++)
{
ccv_icf_feature_t* feature = state->features + i;
fprintf(w, "%d %a\n", feature->count, feature->beta);
for (q = 0; q < feature->count; q++)
fprintf(w, "%d %a %d %d %d %d\n", feature->channel[q], feature->alpha[q], feature->sat[q * 2].x, feature->sat[q * 2].y, feature->sat[q * 2 + 1].x, feature->sat[q * 2 + 1].y);
}
fclose(w);
state->x.features = 1;
}
if (!state->x.example_state)
{
snprintf(filename, 1024, "%s/example_state", directory);
w = fopen(filename, "w+");
for (i = 0; i < state->positives->rnum + state->negatives->rnum; i++)
fprintf(w, "%u %la %a\n", (uint32_t)state->example_state[i].correct, state->example_state[i].weight, state->example_state[i].rate);
fclose(w);
state->x.example_state = 1;
}
if (!state->x.precomputed)
{
size_t step = (3 * (state->positives->rnum + state->negatives->rnum) + 3) & -4;
snprintf(filename, 1024, "%s/precomputed", directory);
w = fopen(filename, "wb+");
fwrite(state->precomputed, 1, step * state->params.feature_size, w);
fclose(w);
state->x.precomputed = 1;
}
if (!state->x.classifier)
{
snprintf(filename, 1024, "%s/cascade", directory);
ccv_icf_write_classifier_cascade(state->classifier, filename);
state->x.classifier = 1;
}
}
static void _ccv_icf_read_classifier_cascade_state(const char* directory, ccv_icf_classifier_cascade_state_t* state)
{
char filename[1024];
state->line_no = state->i = 0;
state->bootstrap = 0;
snprintf(filename, 1024, "%s/state", directory);
FILE* r = fopen(filename, "r");
if (r)
{
int feature_size;
fscanf(r, "%d %d %d", &state->line_no, &state->i, &state->bootstrap);
fscanf(r, "%d %d %d", &feature_size, &state->size.width, &state->size.height);
fscanf(r, "%d %d %d %d", &state->margin.left, &state->margin.top, &state->margin.right, &state->margin.bottom);
assert(feature_size == state->params.feature_size);
fclose(r);
}
int i, q;
snprintf(filename, 1024, "%s/positives", directory);
r = fopen(filename, "rb");
state->x.precomputed = state->x.features = state->x.example_state = state->x.classifier = state->x.positives = state->x.negatives = 1;
if (r)
{
int rnum, rsize;
fread(&rnum, sizeof(rnum), 1, r);
fread(&rsize, sizeof(rsize), 1, r);
state->positives = ccv_array_new(rsize, rnum, 0);
ccv_dense_matrix_t* a = (ccv_dense_matrix_t*)alloca(rsize);
for (i = 0; i < rnum; i++)
{
fread(a, 1, rsize, r);
assert(a->rows == state->size.height + state->margin.top + state->margin.bottom + 2 && a->cols == state->size.width + state->margin.left + state->margin.right + 2);
ccv_array_push(state->positives, a);
}
fclose(r);
}
snprintf(filename, 1024, "%s/negatives", directory);
r = fopen(filename, "rb");
if (r)
{
int rnum, rsize;
fread(&rnum, sizeof(rnum), 1, r);
fread(&rsize, sizeof(rsize), 1, r);
state->negatives = ccv_array_new(rsize, rnum, 0);
ccv_dense_matrix_t* a = (ccv_dense_matrix_t*)alloca(rsize);
for (i = 0; i < rnum; i++)
{
fread(a, 1, rsize, r);
assert(a->rows == state->size.height + state->margin.top + state->margin.bottom + 2 && a->cols == state->size.width + state->margin.left + state->margin.right + 2);
ccv_array_push(state->negatives, a);
}
fclose(r);
}
snprintf(filename, 1024, "%s/features", directory);
r = fopen(filename, "r");
if (r)
{
state->features = (ccv_icf_feature_t*)ccmalloc(state->params.feature_size * sizeof(ccv_icf_feature_t));
for (i = 0; i < state->params.feature_size; i++)
{
ccv_icf_feature_t* feature = state->features + i;
fscanf(r, "%d %a", &feature->count, &feature->beta);
for (q = 0; q < feature->count; q++)
fscanf(r, "%d %a %d %d %d %d", &feature->channel[q], &feature->alpha[q], &feature->sat[q * 2].x, &feature->sat[q * 2].y, &feature->sat[q * 2 + 1].x, &feature->sat[q * 2 + 1].y);
}
fclose(r);
}
snprintf(filename, 1024, "%s/example_state", directory);
r = fopen(filename, "r");
if (r)
{
state->example_state = (ccv_icf_example_state_t*)ccmalloc((state->positives->rnum + state->negatives->rnum) * sizeof(ccv_icf_example_state_t));
for (i = 0; i < state->positives->rnum + state->negatives->rnum; i++)
{
uint32_t correct;
double weight;
float rate;
fscanf(r, "%u %la %a", &correct, &weight, &rate);
state->example_state[i].correct = correct;
state->example_state[i].weight = weight;
state->example_state[i].rate = rate;
}
fclose(r);
}
snprintf(filename, 1024, "%s/precomputed", directory);
r = fopen(filename, "rb");
if (r)
{
size_t step = (3 * (state->positives->rnum + state->negatives->rnum) + 3) & -4;
state->precomputed = (uint8_t*)ccmalloc(sizeof(uint8_t) * state->params.feature_size * step);
fread(state->precomputed, 1, step * state->params.feature_size, r);
fclose(r);
}
snprintf(filename, 1024, "%s/cascade", directory);
state->classifier = ccv_icf_read_classifier_cascade(filename);
if (!state->classifier)
{
state->classifier = (ccv_icf_classifier_cascade_t*)ccmalloc(sizeof(ccv_icf_classifier_cascade_t));
state->classifier->count = 0;
state->classifier->grayscale = state->params.grayscale;
state->classifier->weak_classifiers = (ccv_icf_decision_tree_t*)ccmalloc(sizeof(ccv_icf_decision_tree_t) * state->params.weak_classifier);
} else {
if (state->classifier->count < state->params.weak_classifier)
state->classifier->weak_classifiers = (ccv_icf_decision_tree_t*)ccrealloc(state->classifier->weak_classifiers, sizeof(ccv_icf_decision_tree_t) * state->params.weak_classifier);
}
}
#define less_than(s1, s2, aux) ((s1).value < (s2).value)
static CCV_IMPLEMENT_QSORT(_ccv_icf_precomputed_ordering, ccv_icf_value_index_t, less_than)
#undef less_than
static inline void _ccv_icf_3_uint8_to_1_uint1_1_uint23(uint8_t* u8, uint8_t* u1, uint32_t* uint23)
{
*u1 = (u8[0] >> 7);
*uint23 = (((uint32_t)(u8[0] & 0x7f)) << 16) | ((uint32_t)(u8[1]) << 8) | u8[2];
}
static inline uint32_t _ccv_icf_3_uint8_to_1_uint23(uint8_t* u8)
{
return (((uint32_t)(u8[0] & 0x7f)) << 16) | ((uint32_t)(u8[1]) << 8) | u8[2];
}
static inline void _ccv_icf_1_uint1_1_uint23_to_3_uint8(uint8_t u1, uint32_t u23, uint8_t* u8)
{
u8[0] = ((u1 << 7) | (u23 >> 16)) & 0xff;
u8[1] = (u23 >> 8) & 0xff;
u8[2] = u23 & 0xff;
}
static float _ccv_icf_run_feature_on_example(ccv_icf_feature_t* feature, ccv_dense_matrix_t* a)
{
ccv_dense_matrix_t* icf = 0;
// we have 1px padding around the image
ccv_icf(a, &icf, 0);
ccv_dense_matrix_t* sat = 0;
ccv_sat(icf, &sat, 0, CCV_PADDING_ZERO);
ccv_matrix_free(icf);
float* ptr = sat->data.f32;
int ch = CCV_GET_CHANNEL(sat->type);
float c = _ccv_icf_run_feature(feature, ptr, sat->cols, ch, 1, 1);
ccv_matrix_free(sat);
return c;
}
static uint8_t* _ccv_icf_precompute_features(ccv_icf_feature_t* features, int feature_size, ccv_array_t* positives, ccv_array_t* negatives)
{
int i, j;
// we use 3 bytes to represent the sorted index, and compute feature result (float) on fly
size_t step = (3 * (positives->rnum + negatives->rnum) + 3) & -4;
uint8_t* precomputed = (uint8_t*)ccmalloc(sizeof(uint8_t) * feature_size * step);
ccv_icf_value_index_t* sortkv = (ccv_icf_value_index_t*)ccmalloc(sizeof(ccv_icf_value_index_t) * (positives->rnum + negatives->rnum));
printf(" - precompute features using %luM memory temporarily\n", (sizeof(float) * (positives->rnum + negatives->rnum) * feature_size + sizeof(uint8_t) * feature_size * step) / (1024 * 1024));
float* featval = (float*)ccmalloc(sizeof(float) * feature_size * (positives->rnum + negatives->rnum));
ccv_disable_cache(); // clean up cache so we have enough space to run it
#ifdef USE_DISPATCH
dispatch_semaphore_t sema = dispatch_semaphore_create(1);
dispatch_apply(positives->rnum + negatives->rnum, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^(size_t i) {
#else
for (i = 0; i < positives->rnum + negatives->rnum; i++)
{
#endif
#ifdef USE_DISPATCH
dispatch_semaphore_wait(sema, DISPATCH_TIME_FOREVER);
#endif
if (i % 37 == 0 || i == positives->rnum + negatives->rnum - 1) // don't flush too fast
FLUSH(" - precompute %d features through %d%% (%d / %d) examples", feature_size, (int)(i + 1) * 100 / (positives->rnum + negatives->rnum), (int)i + 1, positives->rnum + negatives->rnum);
#ifdef USE_DISPATCH
dispatch_semaphore_signal(sema);
int j;
#endif
ccv_dense_matrix_t* a = (ccv_dense_matrix_t*)ccv_array_get(i < positives->rnum ? positives : negatives, i < positives->rnum ? i : i - positives->rnum);
a->data.u8 = (unsigned char*)(a + 1); // re-host the pointer to the right place
ccv_dense_matrix_t* icf = 0;
// we have 1px padding around the image
ccv_icf(a, &icf, 0);
ccv_dense_matrix_t* sat = 0;
ccv_sat(icf, &sat, 0, CCV_PADDING_ZERO);
ccv_matrix_free(icf);
float* ptr = sat->data.f32;
int ch = CCV_GET_CHANNEL(sat->type);
for (j = 0; j < feature_size; j++)
{
ccv_icf_feature_t* feature = features + j;
float c = _ccv_icf_run_feature(feature, ptr, sat->cols, ch, 1, 1);
assert(isfinite(c));
featval[(size_t)j * (positives->rnum + negatives->rnum) + i] = c;
}
ccv_matrix_free(sat);
#ifdef USE_DISPATCH
});
dispatch_release(sema);
#else
}
#endif
printf("\n");
uint8_t* computed = precomputed;
float* pfeatval = featval;
for (i = 0; i < feature_size; i++)
{
if (i % 37 == 0 || i == feature_size - 1) // don't flush too fast
FLUSH(" - precompute %d examples through %d%% (%d / %d) features", positives->rnum + negatives->rnum, (i + 1) * 100 / feature_size, i + 1, feature_size);
for (j = 0; j < positives->rnum + negatives->rnum; j++)
sortkv[j].value = pfeatval[j], sortkv[j].index = j;
_ccv_icf_precomputed_ordering(sortkv, positives->rnum + negatives->rnum, 0);
// the first flag denotes if the subsequent one are equal to the previous one (if so, we have to skip both of them)
for (j = 0; j < positives->rnum + negatives->rnum - 1; j++)
_ccv_icf_1_uint1_1_uint23_to_3_uint8(sortkv[j].value == sortkv[j + 1].value, sortkv[j].index, computed + j * 3);
j = positives->rnum + negatives->rnum - 1;
_ccv_icf_1_uint1_1_uint23_to_3_uint8(0, sortkv[j].index, computed + j * 3);
computed += step;
pfeatval += positives->rnum + negatives->rnum;
}
ccfree(featval);
ccfree(sortkv);
printf("\n - features are precomputed on examples and will occupy %luM memory\n", (uint64_t)(feature_size * step) / (1024 * 1024));
return precomputed;
}
typedef struct {
uint32_t pass;
double weigh[4];
int first_feature;
uint8_t* lut;
} ccv_icf_decision_tree_cache_t;
static inline float _ccv_icf_compute_threshold_between(ccv_icf_feature_t* feature, uint8_t* computed, ccv_array_t* positives, ccv_array_t* negatives, int index0, int index1)
{
float c[2];
uint32_t b[2] = {
_ccv_icf_3_uint8_to_1_uint23(computed + index0 * 3),
_ccv_icf_3_uint8_to_1_uint23(computed + index1 * 3),
};
ccv_dense_matrix_t* a = (ccv_dense_matrix_t*)ccv_array_get(b[0] < positives->rnum ? positives : negatives, b[0] < positives->rnum ? b[0] : b[0] - positives->rnum);
a->data.u8 = (unsigned char*)(a + 1); // re-host the pointer to the right place
c[0] = _ccv_icf_run_feature_on_example(feature, a);
a = (ccv_dense_matrix_t*)ccv_array_get(b[1] < positives->rnum ? positives : negatives, b[1] < positives->rnum ? b[1] : b[1] - positives->rnum);
a->data.u8 = (unsigned char*)(a + 1); // re-host the pointer to the right place
c[1] = _ccv_icf_run_feature_on_example(feature, a);
return (c[0] + c[1]) * 0.5;
}
static inline void _ccv_icf_example_correct(ccv_icf_example_state_t* example_state, uint8_t* computed, uint8_t* lut, int leaf, ccv_array_t* positives, ccv_array_t* negatives, int start, int end)
{
int i;
for (i = start; i <= end; i++)
{
uint32_t index = _ccv_icf_3_uint8_to_1_uint23(computed + i * 3);
if (!lut || lut[index] == leaf)
example_state[index].correct = (index < positives->rnum);
}
}
typedef struct {
int error_index;
double error_rate;
double weigh[2];
int count[2];
} ccv_icf_first_feature_find_t;
static ccv_icf_decision_tree_cache_t _ccv_icf_find_first_feature(ccv_icf_feature_t* features, int feature_size, ccv_array_t* positives, ccv_array_t* negatives, uint8_t* precomputed, ccv_icf_example_state_t* example_state, ccv_icf_feature_t* feature)
{
int i;
assert(feature != 0);
ccv_icf_decision_tree_cache_t intermediate_cache;
double aweigh0 = 0, aweigh1 = 0;
for (i = 0; i < positives->rnum; i++)
aweigh1 += example_state[i].weight, example_state[i].correct = 0; // assuming positive examples we get wrong
for (i = positives->rnum; i < positives->rnum + negatives->rnum; i++)
aweigh0 += example_state[i].weight, example_state[i].correct = 1; // assuming negative examples we get right
size_t step = (3 * (positives->rnum + negatives->rnum) + 3) & -4;
ccv_icf_first_feature_find_t* feature_find = (ccv_icf_first_feature_find_t*)ccmalloc(sizeof(ccv_icf_first_feature_find_t) * feature_size);
#ifdef USE_DISPATCH
dispatch_apply(feature_size, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^(size_t i) {
#else
for (i = 0; i < feature_size; i++)
{
#endif
ccv_icf_first_feature_find_t min_find = {
.error_rate = 1.0,
.error_index = 0,
.weigh = {0, 0},
.count = {0, 0},
};
double weigh[2] = {0, 0};
int count[2] = {0, 0};
int j;
uint8_t* computed = precomputed + step * i;
for (j = 0; j < positives->rnum + negatives->rnum; j++)
{
uint8_t skip;
uint32_t index;
_ccv_icf_3_uint8_to_1_uint1_1_uint23(computed + j * 3, &skip, &index);
conditional_assert(j == positives->rnum + negatives->rnum - 1, !skip);
assert(index >= 0 && index < positives->rnum + negatives->rnum);
weigh[index < positives->rnum] += example_state[index].weight;
assert(example_state[index].weight > 0);
assert(weigh[0] <= aweigh0 + 1e-10 && weigh[1] <= aweigh1 + 1e-10);
++count[index < positives->rnum];
if (skip) // the current index is equal to the next one, we cannot differentiate, therefore, skip
continue;
double error_rate = ccv_min(weigh[0] + aweigh1 - weigh[1], weigh[1] + aweigh0 - weigh[0]);
assert(error_rate > 0);
if (error_rate < min_find.error_rate)
{
min_find.error_index = j;
min_find.error_rate = error_rate;
min_find.weigh[0] = weigh[0];
min_find.weigh[1] = weigh[1];
min_find.count[0] = count[0];
min_find.count[1] = count[1];
}
}
feature_find[i] = min_find;
#ifdef USE_DISPATCH
});
#else
}
#endif
ccv_icf_first_feature_find_t best = {
.error_rate = 1.0,
.error_index = -1,
.weigh = {0, 0},
.count = {0, 0},
};
int feature_index = 0;
for (i = 0; i < feature_size; i++)
if (feature_find[i].error_rate < best.error_rate)
{
best = feature_find[i];
feature_index = i;
}
ccfree(feature_find);
*feature = features[feature_index];
uint8_t* computed = precomputed + step * feature_index;
intermediate_cache.lut = (uint8_t*)ccmalloc(positives->rnum + negatives->rnum);
assert(best.error_index < positives->rnum + negatives->rnum - 1 && best.error_index >= 0);
if (best.weigh[0] + aweigh1 - best.weigh[1] < best.weigh[1] + aweigh0 - best.weigh[0])
{
for (i = 0; i < positives->rnum + negatives->rnum; i++)
intermediate_cache.lut[_ccv_icf_3_uint8_to_1_uint23(computed + i * 3)] = (i <= best.error_index);
feature->beta = _ccv_icf_compute_threshold_between(feature, computed, positives, negatives, best.error_index, best.error_index + 1);
// revert the sign of alpha, after threshold is computed
for (i = 0; i < feature->count; i++)
feature->alpha[i] = -feature->alpha[i];
intermediate_cache.weigh[0] = aweigh0 - best.weigh[0];
intermediate_cache.weigh[1] = aweigh1 - best.weigh[1];
intermediate_cache.weigh[2] = best.weigh[0];
intermediate_cache.weigh[3] = best.weigh[1];
intermediate_cache.pass = 3;
if (best.count[0] == 0)
intermediate_cache.pass &= 2; // only positive examples in the right, no need to build right leaf
if (best.count[1] == positives->rnum)
intermediate_cache.pass &= 1; // no positive examples in the left, no need to build left leaf
if (!(intermediate_cache.pass & 1)) // mark positives in the right as correct, if we don't have right leaf
_ccv_icf_example_correct(example_state, computed, 0, 0, positives, negatives, 0, best.error_index);
} else {
for (i = 0; i < positives->rnum + negatives->rnum; i++)
intermediate_cache.lut[_ccv_icf_3_uint8_to_1_uint23(computed + i * 3)] = (i > best.error_index);
feature->beta = -_ccv_icf_compute_threshold_between(feature, computed, positives, negatives, best.error_index, best.error_index + 1);
intermediate_cache.weigh[0] = best.weigh[0];
intermediate_cache.weigh[1] = best.weigh[1];
intermediate_cache.weigh[2] = aweigh0 - best.weigh[0];
intermediate_cache.weigh[3] = aweigh1 - best.weigh[1];
intermediate_cache.pass = 3;
if (best.count[0] == negatives->rnum)
intermediate_cache.pass &= 2; // only positive examples in the right, no need to build right leaf
if (best.count[1] == 0)
intermediate_cache.pass &= 1; // no positive examples in the left, no need to build left leaf
if (!(intermediate_cache.pass & 1)) // mark positives in the right as correct if we don't have right leaf
_ccv_icf_example_correct(example_state, computed, 0, 0, positives, negatives, best.error_index + 1, positives->rnum + negatives->rnum - 1);
}
intermediate_cache.first_feature = feature_index;
return intermediate_cache;
}
typedef struct {
int error_index;
double error_rate;
double weigh[2];
} ccv_icf_second_feature_find_t;
static double _ccv_icf_find_second_feature(ccv_icf_decision_tree_cache_t intermediate_cache, int leaf, ccv_icf_feature_t* features, int feature_size, ccv_array_t* positives, ccv_array_t* negatives, uint8_t* precomputed, ccv_icf_example_state_t* example_state, ccv_icf_feature_t* feature)
{
int i;
size_t step = (3 * (positives->rnum + negatives->rnum) + 3) & -4;
uint8_t* lut = intermediate_cache.lut;
double* aweigh = intermediate_cache.weigh + leaf * 2;
ccv_icf_second_feature_find_t* feature_find = (ccv_icf_second_feature_find_t*)ccmalloc(sizeof(ccv_icf_second_feature_find_t) * feature_size);
#ifdef USE_DISPATCH
dispatch_apply(feature_size, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^(size_t i) {
#else
for (i = 0; i < feature_size; i++)
{
#endif
ccv_icf_second_feature_find_t min_find = {
.error_rate = 1.0,
.error_index = 0,
.weigh = {0, 0},
};
double weigh[2] = {0, 0};
uint8_t* computed = precomputed + step * i;
int j, k;
for (j = 0; j < positives->rnum + negatives->rnum; j++)
{
uint8_t skip;
uint32_t index;
_ccv_icf_3_uint8_to_1_uint1_1_uint23(computed + j * 3, &skip, &index);
conditional_assert(j == positives->rnum + negatives->rnum - 1, !skip);
assert(index >= 0 && index < positives->rnum + negatives->rnum);
// only care about part of the data
if (lut[index] == leaf)
{
uint8_t leaf_skip = 0;
for (k = j + 1; skip; k++)
{
uint32_t new_index;
_ccv_icf_3_uint8_to_1_uint1_1_uint23(computed + j * 3, &skip, &new_index);
// if the next equal one is the same leaf, we cannot distinguish them, skip
if ((leaf_skip = (lut[new_index] == leaf)))
break;
conditional_assert(k == positives->rnum + negatives->rnum - 1, !skip);
}
weigh[index < positives->rnum] += example_state[index].weight;
if (leaf_skip)
continue;
assert(example_state[index].weight > 0);
assert(weigh[0] <= aweigh[0] + 1e-10 && weigh[1] <= aweigh[1] + 1e-10);
double error_rate = ccv_min(weigh[0] + aweigh[1] - weigh[1], weigh[1] + aweigh[0] - weigh[0]);
if (error_rate < min_find.error_rate)
{
min_find.error_index = j;
min_find.error_rate = error_rate;
min_find.weigh[0] = weigh[0];
min_find.weigh[1] = weigh[1];
}
}
}
feature_find[i] = min_find;
#ifdef USE_DISPATCH
});
#else
}
#endif
ccv_icf_second_feature_find_t best = {
.error_rate = 1.0,
.error_index = -1,
.weigh = {0, 0},
};
int feature_index = 0;
for (i = 0; i < feature_size; i++)
if (feature_find[i].error_rate < best.error_rate)
{
best = feature_find[i];
feature_index = i;
}
ccfree(feature_find);
*feature = features[feature_index];
uint8_t* computed = precomputed + step * feature_index;
assert(best.error_index < positives->rnum + negatives->rnum - 1 && best.error_index >= 0);
if (best.weigh[0] + aweigh[1] - best.weigh[1] < best.weigh[1] + aweigh[0] - best.weigh[0])
{
feature->beta = _ccv_icf_compute_threshold_between(feature, computed, positives, negatives, best.error_index, best.error_index + 1);
// revert the sign of alpha, after threshold is computed
for (i = 0; i < feature->count; i++)
feature->alpha[i] = -feature->alpha[i];
// mark everything on the right properly
_ccv_icf_example_correct(example_state, computed, lut, leaf, positives, negatives, 0, best.error_index);
return best.weigh[1] + aweigh[0] - best.weigh[0];
} else {
feature->beta = -_ccv_icf_compute_threshold_between(feature, computed, positives, negatives, best.error_index, best.error_index + 1);
// mark everything on the right properly
_ccv_icf_example_correct(example_state, computed, lut, leaf, positives, negatives, best.error_index + 1, positives->rnum + negatives->rnum - 1);
return best.weigh[0] + aweigh[1] - best.weigh[1];
}
}
static double _ccv_icf_find_best_weak_classifier(ccv_icf_feature_t* features, int feature_size, ccv_array_t* positives, ccv_array_t* negatives, uint8_t* precomputed, ccv_icf_example_state_t* example_state, ccv_icf_decision_tree_t* weak_classifier)
{
// we are building the specific depth-2 decision tree
ccv_icf_decision_tree_cache_t intermediate_cache = _ccv_icf_find_first_feature(features, feature_size, positives, negatives, precomputed, example_state, weak_classifier->features);
// find the left feature
// for the pass, 10 is the left branch, 01 is the right branch
weak_classifier->pass = intermediate_cache.pass;
double rate = 0;
if (weak_classifier->pass & 0x2)
rate += _ccv_icf_find_second_feature(intermediate_cache, 0, features, feature_size, positives, negatives, precomputed, example_state, weak_classifier->features + 1);
else
rate += intermediate_cache.weigh[0]; // the negative weights covered by first feature
// find the right feature
if (weak_classifier->pass & 0x1)
rate += _ccv_icf_find_second_feature(intermediate_cache, 1, features, feature_size, positives, negatives, precomputed, example_state, weak_classifier->features + 2);
else
rate += intermediate_cache.weigh[3]; // the positive weights covered by first feature
ccfree(intermediate_cache.lut);
return rate;
}
static ccv_array_t* _ccv_icf_collect_validates(gsl_rng* rng, ccv_size_t size, ccv_margin_t margin, ccv_array_t* validatefiles, int grayscale)
{
ccv_array_t* validates = ccv_array_new(ccv_compute_dense_matrix_size(size.height + margin.top + margin.bottom + 2, size.width + margin.left + margin.right + 2, CCV_8U | (grayscale ? CCV_C1 : CCV_C3)), validatefiles->rnum, 0);
int i;
// collect tests
for (i = 0; i < validatefiles->rnum; i++)
{
ccv_file_info_t* file_info = (ccv_file_info_t*)ccv_array_get(validatefiles, i);
ccv_dense_matrix_t* image = 0;
ccv_read(file_info->filename, &image, CCV_IO_ANY_FILE | (grayscale ? CCV_IO_GRAY : CCV_IO_RGB_COLOR));
if (image == 0)
{
printf("\n - %s: cannot be open, possibly corrupted\n", file_info->filename);
continue;
}
ccv_dense_matrix_t* feature = _ccv_icf_capture_feature(rng, image, file_info->pose, size, margin, 0, 0, 0);
feature->sig = 0;
ccv_array_push(validates, feature);
ccv_matrix_free(feature);
ccv_matrix_free(image);
}
return validates;
}
static ccv_array_t* _ccv_icf_collect_positives(gsl_rng* rng, ccv_size_t size, ccv_margin_t margin, ccv_array_t* posfiles, int posnum, float deform_angle, float deform_scale, float deform_shift, int grayscale)
{
ccv_array_t* positives = ccv_array_new(ccv_compute_dense_matrix_size(size.height + margin.top + margin.bottom + 2, size.width + margin.left + margin.right + 2, CCV_8U | (grayscale ? CCV_C1 : CCV_C3)), posnum, 0);
int i, j, q;
// collect positives (with random deformation)
for (i = 0; i < posnum;)
{
FLUSH(" - collect positives %d%% (%d / %d)", (i + 1) * 100 / posnum, i + 1, posnum);
double ratio = (double)(posnum - i) / posfiles->rnum;
for (j = 0; j < posfiles->rnum && i < posnum; j++)
{
ccv_file_info_t* file_info = (ccv_file_info_t*)ccv_array_get(posfiles, j);
ccv_dense_matrix_t* image = 0;
ccv_read(file_info->filename, &image, CCV_IO_ANY_FILE | (grayscale ? CCV_IO_GRAY : CCV_IO_RGB_COLOR));
if (image == 0)
{
printf("\n - %s: cannot be open, possibly corrupted\n", file_info->filename);
continue;
}
for (q = 0; q < ratio; q++)
if (q < (int)ratio || gsl_rng_uniform(rng) <= ratio - (int)ratio)
{
FLUSH(" - collect positives %d%% (%d / %d)", (i + 1) * 100 / posnum, i + 1, posnum);
ccv_dense_matrix_t* feature = _ccv_icf_capture_feature(rng, image, file_info->pose, size, margin, deform_angle, deform_scale, deform_shift);
feature->sig = 0;
ccv_array_push(positives, feature);
ccv_matrix_free(feature);
++i;
if (i >= posnum)
break;
}
ccv_matrix_free(image);
}
}
printf("\n");
return positives;
}
static uint64_t* _ccv_icf_precompute_classifier_cascade(ccv_icf_classifier_cascade_t* cascade, ccv_array_t* positives)
{
int step = ((cascade->count - 1) >> 6) + 1;
uint64_t* precomputed = (uint64_t*)ccmalloc(sizeof(uint64_t) * positives->rnum * step);
uint64_t* result = precomputed;
int i, j;
for (i = 0; i < positives->rnum; i++)
{
ccv_dense_matrix_t* a = (ccv_dense_matrix_t*)(ccv_array_get(positives, i));
a->data.u8 = (uint8_t*)(a + 1);
ccv_dense_matrix_t* icf = 0;
ccv_icf(a, &icf, 0);
ccv_dense_matrix_t* sat = 0;
ccv_sat(icf, &sat, 0, CCV_PADDING_ZERO);
ccv_matrix_free(icf);
float* ptr = sat->data.f32;
int ch = CCV_GET_CHANNEL(sat->type);
for (j = 0; j < cascade->count; j++)
if (_ccv_icf_run_weak_classifier(cascade->weak_classifiers + j, ptr, sat->cols, ch, 1, 1))
precomputed[j >> 6] |= (1UL << (j & 63));
else
precomputed[j >> 6] &= ~(1UL << (j & 63));
ccv_matrix_free(sat);
precomputed += step;
}
return result;
}
#define less_than(s1, s2, aux) ((s1) > (s2))
static CCV_IMPLEMENT_QSORT(_ccv_icf_threshold_rating, float, less_than)
#undef less_than
static void _ccv_icf_classifier_cascade_soft_with_validates(ccv_array_t* validates, ccv_icf_classifier_cascade_t* cascade, double min_accept)
{
int i, j;
int step = ((cascade->count - 1) >> 6) + 1;
uint64_t* precomputed = _ccv_icf_precompute_classifier_cascade(cascade, validates);
float* positive_rate = (float*)ccmalloc(sizeof(float) * validates->rnum);
uint64_t* computed = precomputed;
for (i = 0; i < validates->rnum; i++)
{
positive_rate[i] = 0;
for (j = 0; j < cascade->count; j++)
{
uint64_t accept = computed[j >> 6] & (1UL << (j & 63));
positive_rate[i] += cascade->weak_classifiers[j].weigh[!!accept];
}
computed += step;
}
_ccv_icf_threshold_rating(positive_rate, validates->rnum, 0);
float threshold = positive_rate[ccv_min((int)(min_accept * (validates->rnum + 0.5) - 0.5), validates->rnum - 1)];
ccfree(positive_rate);
computed = precomputed;
// compute the final acceptance per validates / negatives with final threshold
uint64_t* acceptance = (uint64_t*)cccalloc(((validates->rnum - 1) >> 6) + 1, sizeof(uint64_t));
int true_positives = 0;
for (i = 0; i < validates->rnum; i++)
{
float rate = 0;
for (j = 0; j < cascade->count; j++)
{
uint64_t accept = computed[j >> 6] & (1UL << (j & 63));
rate += cascade->weak_classifiers[j].weigh[!!accept];
}
if (rate >= threshold)
{
acceptance[i >> 6] |= (1UL << (i & 63));
++true_positives;
} else