forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
scale-test
executable file
·812 lines (690 loc) · 27.8 KB
/
scale-test
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
#!/usr/bin/env python
#
# -*- python -*-
#
# Runs a .gyb scale-testing file repeatedly through swiftc while varying a
# scaling variable 'N', collects json stats from the compiler, transforms the
# problem to log-space and runs a linear regression to estimate the exponent on
# the stat's growth curve relative to N.
#
# The estimate will be more accurate as N increases, so if you get a
# not-terribly-convincing estimate, try increasing --begin and --end to larger
# values.
#
from __future__ import print_function
import argparse
import functools
import io
import json
import math
import os
import os.path
import random
import shutil
import subprocess
import sys
import tempfile
from collections import namedtuple
from operator import attrgetter
from build_swift.build_swift import shell
import gyb
from jobstats import load_stats_dir, merge_all_jobstats
# Evidently the debug-symbol reader in dtrace is sufficiently slow and/or buggy
# that attempting to inject probes into a binary w/ debuginfo is asking for a
# failed run (possibly racing with probe insertion, or probing the stabs
# entries, see rdar://problem/7037927 or rdar://problem/11490861 respectively),
# so we sniff the presence of debug symbols here.
def has_debuginfo(swiftc):
swiftc = shell.which(swiftc)
for line in subprocess.check_output(
["dwarfdump", "--file-stats", swiftc]).splitlines():
if '%' not in line:
continue
fields = line.split()
if fields[8] != '0.00%' or fields[10] != '0.00%':
return True
return False
def write_input_file(args, ast, d, n):
fname = "in%d.swift" % n
pathname = os.path.join(d, fname)
with io.open(pathname, 'w+', encoding='utf-8', newline='\n') as f:
f.write(gyb.execute_template(ast, '', N=n))
return fname
def ensure_tmpdir(d):
if d is not None and not os.path.exists(d):
os.makedirs(d, 0o700)
return tempfile.mkdtemp(dir=d)
# In newer compilers, we can use -stats-output-dir and get both more
# counters, plus counters that are enabled in non-assert builds. Check
# to see if we have support for that.
def supports_stats_output_dir(args):
d = ensure_tmpdir(args.tmpdir)
sd = os.path.join(d, "stats-probe")
try:
os.makedirs(sd, 0o700)
# Write a trivial test program and try running with
# -stats-output-dir
testpath = os.path.join(sd, "test.swift")
with open(testpath, 'w+') as f:
f.write("print(1)\n")
command = [args.swiftc_binary, '-frontend',
'-typecheck',
'-stats-output-dir', sd, testpath]
subprocess.check_call(command)
stats = load_stats_dir(sd)
return len(stats) != 0
except subprocess.CalledProcessError:
return False
finally:
shutil.rmtree(sd)
def run_once_with_primary(args, ast, rng, primary_idx):
r = {}
try:
d = ensure_tmpdir(args.tmpdir)
inputs = [write_input_file(args, ast, d, i) for i in rng]
primary = inputs[primary_idx]
# frontend no longer accepts duplicate inputs
del inputs[primary_idx]
ofile = "out.o"
mode = "-c"
if args.typecheck:
mode = "-typecheck"
if args.parse:
mode = "-parse"
focus = ["-primary-file", primary]
if args.whole_module_optimization:
focus = ['-whole-module-optimization']
opts = []
if args.optimize:
opts = ['-O']
elif args.optimize_none:
opts = ['-Onone']
elif args.optimize_unchecked:
opts = ['-Ounchecked']
extra = args.Xfrontend[:]
if args.debuginfo:
extra.append('-g')
command = [args.swiftc_binary,
"-frontend", mode,
"-o", ofile] + opts + focus + extra + inputs
if args.trace:
print("running: " + " ".join(command))
if args.dtrace:
trace = "trace.txt"
script = ("pid$target:swiftc:*%s*:entry { @[probefunc] = count() }"
% args.select)
try:
subprocess.check_call(
["sudo", "dtrace", "-q",
"-o", trace,
"-b", "256",
"-n", script,
"-c", " ".join(command)], cwd=d)
except subprocess.CalledProcessError as e:
if e.returncode != args.expected_exit_code:
raise
r = {fields[0]: int(fields[1]) for fields in
[line.split() for line in open(os.path.join(d, trace))]
if len(fields) == 2}
else:
if args.debug:
command = ["lldb", "--"] + command
stats = "stats.json"
if args.llvm_stat_reporter:
argv = command + ["-Xllvm", "-stats",
"-Xllvm", "-stats-json",
"-Xllvm", "-info-output-file=" + stats]
else:
argv = command + ["-stats-output-dir", d]
try:
subprocess.check_call(argv, cwd=d)
except subprocess.CalledProcessError as e:
if e.returncode != args.expected_exit_code:
raise
if args.llvm_stat_reporter:
with open(os.path.join(d, stats)) as f:
r = json.load(f)
else:
r = merge_all_jobstats(load_stats_dir(d)).stats
finally:
if not args.save_temps:
shutil.rmtree(d)
return {k: v for (k, v) in r.items() if args.select in k and
not (args.exclude_timers and k.startswith('time.'))}
def run_once(args, ast, rng):
if args.sum_multi:
cumulative = {}
for i in range(len(rng)):
tmp = run_once_with_primary(args, ast, rng, i)
for (k, v) in tmp.items():
if k in cumulative:
cumulative[k] += v
else:
cumulative[k] = v
return cumulative
else:
return run_once_with_primary(args, ast, rng, -1)
def run_many(args):
if args.dtrace and has_debuginfo(args.swiftc_binary):
print("")
print("**************************************************")
print("")
print("dtrace is unreliable on binaries w/ debug symbols")
print("please run 'strip -S %s'" % args.swiftc_binary)
print("or pass a different --swiftc-binary")
print("")
print("**************************************************")
print("")
exit(1)
if not args.llvm_stat_reporter:
if not supports_stats_output_dir(args):
print("**************************************************")
print("")
print("unable to use new-style -stats-output-dir reporting,")
print("falling back to old-style -Xllvm -stats-json reporting")
print("(run with --llvm-stat-reporter to silence this warning)")
print("")
print("**************************************************")
args.llvm_stat_reporter = True
if args.file == '-':
ast = gyb.parse_template('stdin', sys.stdin.read())
else:
with io.open(args.file, 'r', encoding='utf-8') as f:
ast = gyb.parse_template(args.file, f.read())
rng = range(args.begin, args.end, args.step)
if args.step > (args.end - args.begin):
print("Step value", args.step,
"is too large for the range", str((args.begin, args.end)) + ".",
"Have you forgotten to override it?")
exit(1)
if args.multi_file or args.sum_multi:
return (rng, [run_once(args, ast, range(i)) for i in rng])
else:
return (rng, [run_once(args, ast, [r]) for r in rng])
somewhat_small = 1e-4
def is_somewhat_small(x):
return abs(x) < somewhat_small
def tup_add(t1, t2):
return tuple(a + b for (a, b) in zip(t1, t2))
def tup_sub(t1, t2):
return tuple(a - b for (a, b) in zip(t1, t2))
def tup_mul(s, t):
return tuple(s * v for v in t)
def tup_distance(t1, t2):
return math.sqrt(sum((a - b) ** 2 for (a, b) in zip(t1, t2)))
def centroid(tuples):
n = len(tuples)
if n == 0:
return 0.0
tupsz = len(tuples[0])
zero = (0,) * tupsz
s = functools.reduce(tup_add, tuples, zero)
return tup_mul(1.0 / float(n), s)
def converged(ctr, simplex, epsilon):
return max(tup_distance(ctr, p.loc) for p in simplex) < epsilon
def Nelder_Mead_simplex(objective, params, bounds, epsilon=1.0e-6):
# By the book: https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
ndim = len(params)
assert(ndim >= 2)
def named(tup):
return params.__new__(params.__class__, *tup)
def f(tup):
return objective(named(tup))
locs = [tuple(random.uniform(*b) for b in bounds)
for _ in range(ndim + 1)]
SimplexPoint = namedtuple("SimplexPoint", ["loc", "val"])
simplex = [SimplexPoint(loc=loc, val=f(loc)) for loc in locs]
# Algorithm parameters
alpha = 1.0
gamma = 2.0
rho = 0.5
sigma = 0.5
max_iter = 1024
while True:
# 1. Order
simplex.sort(key=attrgetter('val'))
# 2. Centroid
x0 = centroid([s.loc for s in simplex[:-1]])
max_iter -= 1
if max_iter < 0 or converged(x0, simplex, epsilon):
return (named(simplex[0].loc), simplex[0].val)
# (convenient names for best-point and value)
xb = simplex[0].loc
vb = simplex[0].val
# (convenient names for worst-point and value)
xw = simplex[-1].loc
vw = simplex[-1].val
# 3. Reflection
xr = tup_add(x0, tup_mul(alpha, tup_sub(x0, xw)))
vr = f(xr)
if vb <= vr and vr < simplex[-2].val:
simplex[-1] = SimplexPoint(loc=xr, val=vr)
continue
# 4. Expansion
if vr < vb:
xe = tup_add(x0, tup_mul(gamma, tup_sub(xr, x0)))
ve = f(xe)
if ve < vr:
simplex[-1] = SimplexPoint(loc=xe, val=ve)
else:
simplex[-1] = SimplexPoint(loc=xr, val=vr)
continue
# 5. Contraction
assert(vr >= simplex[-2].val)
xc = tup_add(x0, tup_mul(rho, tup_sub(xw, x0)))
vc = f(xc)
if vc < vw:
simplex[-1] = SimplexPoint(loc=xc, val=vc)
continue
# 6. Shrink
simplex = (simplex[:1] +
[SimplexPoint(loc=L, val=f(L))
for L in [tup_add(xb, tup_mul(sigma, tup_sub(p.loc, xb)))
for p in simplex[1:]]])
# Nonlinear regression entrypoint
#
# Takes an objective function of type
#
# objective: (params:namedtuple, x:float) -> y:float
#
# Along with a set of parameters, bounds on the parameters, and some xs and
# ys that make up a dataset. Creates a local function (over _just_
# parameters) that calculates the sum-of-squares-of-residuals between the
# objective-at-those-params and the data. Then runs a simple
# coordinate_descent nonlinear optimization on the parameter space until it
# converges. Then calculates the r_squared (coefficient of determination
# a.k.a. goodness-of-fit, a number betwee 0 and 1 with 1 meaning "fits
# perfectly") and finally returns (fit_params, r_squared).
def fit_function_to_data_by_least_squares(objective, params, bounds, xs, ys):
assert(len(ys) > 0)
mean_y = sum(ys) / len(ys)
ss_total = sum((y - mean_y) ** 2 for y in ys)
data = list(zip(xs, ys))
def inner(ps):
s = 0.0
for (x, y) in data:
s += (y - objective(ps, x)) ** 2
return s
retries = 100
for _ in range(retries):
(fit_params, ss_residuals) = Nelder_Mead_simplex(inner, params, bounds)
if is_somewhat_small(ss_total):
ss_total = somewhat_small
if is_somewhat_small(ss_residuals / ss_total):
r_squared = 1.0 - (ss_residuals / ss_total)
return (fit_params, r_squared)
else:
# Bad fit, restart
pass
raise ValueError("Nelder-Mead failed %d retries" % retries)
# Fit a 2-parameter linear model f(x) = const + coeff * x to a set
# of data (lists of xs and ys). Returns (coeff, const, fit).
def fit_linear_model(xs, ys):
# By the book: https://en.wikipedia.org/wiki/Simple_linear_regression
n = float(len(xs))
assert n == len(ys)
if n == 0:
return 0, 0, 1.0
# Don't bother with anything fancy if function is constant.
if all(y == ys[0] for y in ys):
return (0.0, ys[0], 1.0)
sum_x = sum(xs)
sum_y = sum(ys)
sum_prod = sum(a * b for a, b in zip(xs, ys))
sum_x_sq = sum(a ** 2 for a in xs)
sum_y_sq = sum(b ** 2 for b in ys)
mean_x = sum_x / n
mean_y = sum_y / n
mean_prod = sum_prod / n
mean_x_sq = sum_x_sq / n
mean_y_sq = sum_y_sq / n
covar_xy = mean_prod - mean_x * mean_y
var_x = mean_x_sq - mean_x**2
var_y = mean_y_sq - mean_y**2
slope = covar_xy / var_x
inter = mean_y - slope * mean_x
# Compute the correlation coefficient aka r^2, to compare goodness-of-fit.
if is_somewhat_small(var_y):
# all of the outputs are the same, so this is a perfect fit
assert is_somewhat_small(covar_xy)
cor_coeff_sq = 1.0
elif is_somewhat_small(var_x):
# all of the inputs are the same, and the outputs are different, so
# this is a completely imperfect fit
assert is_somewhat_small(covar_xy)
cor_coeff_sq = 0.0
else:
cor_coeff_sq = covar_xy**2 / (var_x * var_y)
return slope, inter, cor_coeff_sq
# Fit a 3-parameter polynomial model f(x) = const + coeff * x^exp to a set
# of data (lists of xs and ys). Returns (exp, coeff, fit).
def fit_polynomial_model(xs, ys):
PolynomialParams = namedtuple('PolynomialParams',
['const', 'coeff', 'exp'])
params = PolynomialParams(const=0.0, coeff=1.0, exp=1.0)
mag = max(abs(y) for y in ys)
bounds = PolynomialParams(const=(0, mag),
coeff=(0, mag),
exp=(0.25, 8.0))
def objective(params, x):
return params.const + params.coeff * (x ** params.exp)
(p, f) = fit_function_to_data_by_least_squares(objective,
params, bounds,
xs, ys)
e = p.exp
if is_somewhat_small(p.coeff):
e = 0.0
return (e, p.coeff, f)
# Fit a 3-parameter exponential model f(x) = const + coeff * base^x to
# a set of data (lists of xs and ys). Returns (base, coeff, fit).
def fit_exponential_model(xs, ys):
ExponentialParams = namedtuple('ExponentialParams',
['base', 'coeff', 'const'])
params = ExponentialParams(base=1.0, const=1.0, coeff=1.0)
mag = max(abs(y) for y in ys)
bounds = ExponentialParams(base=(0.0, 10.0),
coeff=(-mag, mag),
const=(-mag, mag))
def objective(params, x):
return params.const + params.coeff * (params.base ** x)
(p, f) = fit_function_to_data_by_least_squares(objective,
params, bounds,
xs, ys)
b = p.base
if is_somewhat_small(p.coeff):
b = 0.0
return (b, p.coeff, f)
def self_test():
import unittest
class Tests(unittest.TestCase):
def check_linearfit(self, xs, ys, lin, fit=1.0):
(m, _, f) = fit_linear_model(xs, ys)
print("linearfit(xs, ys, lin=%f, fit=%f) = (%f, %f)" %
(lin, fit, m, f))
self.assertAlmostEqual(m, lin, places=1)
self.assertAlmostEqual(f, fit, places=1)
return f
def check_polyfit(self, xs, ys, exp, fit=1.0):
(e, _, f) = fit_polynomial_model(xs, ys)
print("polyfit(xs, ys, exp=%f, fit=%f) = (%f, %f)" %
(exp, fit, e, f))
self.assertAlmostEqual(e, exp, places=1)
self.assertAlmostEqual(f, fit, places=1)
return f
def check_expfit(self, xs, ys, base, fit=1.0):
(b, _, f) = fit_exponential_model(xs, ys)
print("expfit(xs, ys, base=%f, fit=%f) = (%f, %f)" %
(base, fit, b, f))
self.assertAlmostEqual(b, base, places=1)
self.assertAlmostEqual(f, fit, places=1)
return f
def test_tuples(self):
self.assertEqual(tup_distance((1, 0, 0), (0, 0, 0)), 1.0)
self.assertEqual(tup_distance((1, 0, 0), (1, 0, 0)), 0.0)
self.assertEqual(tup_distance((2, 0, 2, 0),
(0, 2, 0, 2)), 4.0)
self.assertEqual(tup_add((1, 0, 0), (1, 0, 0)), (2, 0, 0))
self.assertEqual(tup_add((1, 3, 1), (1, 2, 5)), (2, 5, 6))
self.assertEqual(centroid([(1, 0),
(0, 1)]), (0.5, 0.5))
self.assertEqual(centroid([(1, 0, 0, 0),
(0, 1, 0, 0),
(0, 0, 1, 0),
(0, 0, 0, 1)]),
(0.25, 0.25, 0.25, 0.25))
def test_constant(self):
self.check_polyfit([1, 2, 3, 4, 5, 6],
[5, 5, 5, 5, 5, 5], 0)
def test_linear1(self):
self.check_polyfit([1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6], 1)
def test_linear2(self):
self.check_polyfit([1, 2, 3, 4, 5, 6],
[100, 200, 300, 400, 500, 600], 1)
def test_linear3(self):
self.check_polyfit([5, 10, 15],
[307, 632, 957], 1)
# "Basically linear", with a little nonlinearity in the first
# point. Polynomial-fit fails here because the simplex algorithm
# keeps trying to account for the first point by admitting a
# nonzero nonlinear term, thus bending the whole line instead of
# focusing on the linear and constant terms. So we run an
# independent fit on a "strictly linear" model too.
def test_eventually_linear(self):
self.check_linearfit([1, 2, 3, 4, 5, 6, 7, 8],
[15, 20, 30, 40, 50, 60, 70, 80],
9.6)
# Double check that linear-fit (which "always fits") isn't
# preferred over good nonlinear fits.
def test_linear_model_of_poly(self):
xs = [10, 20, 30, 40, 50, 60]
ys = [100, 400, 900, 1600, 2500, 3600]
lf = self.check_linearfit(xs, ys, 70)
pf = self.check_polyfit(xs, ys, 2)
self.assertGreater(pf, lf)
def test_linear_model_of_poly_2(self):
xs = [10, 20, 30, 40, 50, 60]
ys = [1000, 8000, 27000, 64000, 125000, 216000]
lf = self.check_linearfit(xs, ys, 4180, 0.87)
pf = self.check_polyfit(xs, ys, 3)
self.assertGreater(pf, lf)
def test_linear_model_of_poly_3(self):
xs = [1, 2, 3, 4, 5]
ys = [1.0, 2.3, 3.74, 5.28, 6.9]
lf = self.check_linearfit(xs, ys, 1.47)
pf = self.check_polyfit(xs, ys, 1.2)
self.assertGreater(pf, lf)
def test_linear_model_of_poly_offset(self):
xs = [10, 20, 30, 40, 50, 60]
ys = [1100, 1400, 1900, 2600, 3500, 4600]
lf = self.check_linearfit(xs, ys, 70)
pf = self.check_polyfit(xs, ys, 2)
self.assertGreater(pf, lf)
def test_linear_offset(self):
self.check_polyfit([1, 2, 3, 4, 5, 6],
[1000 + i for i in range(1, 7)], 1)
def test_linear_offset_scaled(self):
self.check_polyfit([1, 2, 3, 4, 5, 6],
[1000 + 2 * i for i in range(1, 7)], 1)
def test_quadratic2(self):
self.check_polyfit([10, 20, 30, 40, 50, 60],
[100, 400, 900, 1600, 2500, 3600], 2)
def test_exp_model_of_quadratic(self):
with self.assertRaises(ValueError):
self.check_expfit([10, 20, 30, 40, 50, 60],
[100, 400, 900, 1600, 2500, 3600], 2)
def test_poly_model_of_exp(self):
with self.assertRaises(ValueError):
self.check_polyfit([10, 20, 30, 40, 50, 60],
[1002, 1004, 1008, 1016, 1032], 2)
def test_quadratic_offset(self):
self.check_polyfit([10, 20, 30, 40, 50, 60],
[1100, 1400, 1900, 2600, 3500, 4600], 2)
def test_expt(self):
self.check_expfit([1, 2, 3, 4, 5],
[2, 4, 8, 16, 32], 2)
def test_expt_offset(self):
self.check_expfit([1, 2, 3, 4, 5],
[1002, 1004, 1008, 1016, 1032], 2)
def test_expt_scale_offset(self):
self.check_expfit([1, 2, 3, 4, 5],
[2004, 2008, 2016, 2032, 2064], 2)
suite = unittest.TestLoader().loadTestsFromTestCase(Tests)
return unittest.TextTestRunner(verbosity=2).run(suite)
def report(args, rng, runs):
bad = False
keys = set.intersection(*[set(j.keys()) for j in runs])
if len(keys) == 0:
print("No data found")
if len(args.select) != 0:
"(perhaps try a different --select?)"
return True
rows = []
for k in keys:
vals = [r[k] for r in runs]
bounded = [max(v, 1) for v in vals]
one_fit = False
perfect_fit = False
fit_r2_thresh = 0.99
lin_b, lin_a, lin_r2 = fit_linear_model(rng, bounded)
if lin_r2 > fit_r2_thresh:
one_fit = True
if lin_r2 == 1.0:
perfect_fit = True
p_b, p_a, p_r2 = (1.0, 1.0, 0.0)
e_b, e_a, e_r2 = (1.0, 1.0, 0.0)
try:
if not perfect_fit:
p_b, p_a, p_r2 = fit_polynomial_model(rng, bounded)
if p_r2 > fit_r2_thresh:
one_fit = True
if p_r2 == 1.0:
perfect_fit = True
except ValueError:
pass
try:
if not perfect_fit:
e_b, e_a, e_r2 = fit_exponential_model(rng, bounded)
if e_r2 > fit_r2_thresh:
one_fit = True
except ValueError:
pass
if not one_fit:
print("failed to fit model to " + repr(vals))
return True
if lin_r2 >= e_r2 and lin_r2 >= p_r2:
# strict-linear is best
rows.append((False, 0.0 if lin_b == 0 else 1.0, k, vals))
elif p_r2 >= e_r2:
# polynomial is best
rows.append((False, p_b, k, vals))
else:
# exponential is best
rows.append((True, e_b, k, vals))
# Exponential fits always go after polynomial fits.
rows.sort()
for (is_exp, b, k, vals) in rows:
# same threshold for both the polynomial exponent or the exponential
# base.
if is_exp:
this_is_bad = b >= args.exponential_threshold
formatted = '%1.1f^n' % b
else:
this_is_bad = b >= args.polynomial_threshold
formatted = 'n^%1.1f' % b
if this_is_bad:
bad = True
if not args.quiet or this_is_bad:
print("O(%s) : %s" % (formatted, k))
if args.values:
print(" = ", vals)
if args.invert_result:
bad = not bad
return bad
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'file', type=str,
help='Path to GYB template file (defaults to stdin)', nargs='?',
default=sys.stdin)
parser.add_argument(
'--values', action='store_true',
default=False, help='print stat values')
parser.add_argument(
'--trace', action='store_true',
default=False, help='trace compiler invocations')
parser.add_argument(
'--quiet', action='store_true',
default=False, help='only print superlinear stats')
parser.add_argument(
'--polynomial-threshold', type=float,
default=1.2,
help='minimum exponent for polynomial fit to consider "bad scaling"')
parser.add_argument(
'--exponential-threshold', type=float,
default=1.2,
help='minimum base for exponential fit to consider "bad scaling"')
parser.add_argument(
'-parse', '--parse', action='store_true',
default=False, help='only run compiler with -parse')
parser.add_argument(
'-typecheck', '--typecheck', action='store_true',
default=False, help='only run compiler with -typecheck')
parser.add_argument(
'-g', '--debuginfo', action='store_true',
default=False, help='run compiler with -g')
parser.add_argument(
'-wmo', '--whole-module-optimization', action='store_true',
default=False, help='run compiler with -whole-module-optimization')
parser.add_argument(
'--dtrace', action='store_true',
default=False, help='use dtrace to sample all functions')
parser.add_argument(
'-Xfrontend', action='append',
default=[], help='pass additional args to frontend jobs')
parser.add_argument(
'--begin', type=int,
default=10, help='first value for N')
parser.add_argument(
'--end', type=int,
default=100, help='last value for N')
parser.add_argument(
'--step', type=int,
default=10, help='step value for N')
parser.add_argument(
'--swiftc-binary',
default="swiftc", help='swift binary to execute')
parser.add_argument(
'--tmpdir', type=str,
default=None, help='directory to create tempfiles in')
parser.add_argument(
'--save-temps', action='store_true',
default=False, help='save files in tempfiles')
parser.add_argument(
'--select',
default="", help='substring of counters/symbols to limit attention to')
parser.add_argument(
'--exclude-timers', action="store_true",
default=False, help='Exclude timers (starting with \'time.\') from the '
'analysis')
parser.add_argument(
'--debug', action='store_true',
default=False, help='invoke lldb on each scale test')
parser.add_argument(
'--llvm-stat-reporter', action='store_true',
default=False, help='only collect stats via old-style LLVM reporter')
parser.add_argument(
'--self-test', action='store_true',
default=False, help='run arithmetic unit-tests of scale-test itself')
parser.add_argument(
'--expected-exit-code', type=int, default=0,
help='exit code expected from the compiler invocation')
parser.add_argument(
'--invert-result', action='store_true',
default=False, help='invert the result of the data fitting')
group = parser.add_mutually_exclusive_group()
group.add_argument(
'-O', '--optimize', action='store_true',
default=False, help='run compiler with -O')
group.add_argument(
'-Onone', '--optimize-none', action='store_true',
default=False, help='run compiler with -Onone')
group.add_argument(
'-Ounchecked', '--optimize-unchecked', action='store_true',
default=False, help='run compiler with -Ounchecked')
group = parser.add_mutually_exclusive_group()
group.add_argument(
'--multi-file', action='store_true',
default=False, help='vary number of input files as well')
group.add_argument(
'--sum-multi', action='store_true',
default=False, help='simulate a multi-primary run and sum stats')
args = parser.parse_args(sys.argv[1:])
if args.self_test:
exit(self_test())
(rng, runs) = run_many(args)
if report(args, rng, runs):
exit(1)
exit(0)
if __name__ == '__main__':
main()