forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcallbacks.py
631 lines (551 loc) · 25.1 KB
/
callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
import gc
import os
import platform
import tracemalloc
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import gymnasium as gym
from ray.rllib.core.rl_module.rl_module import RLModule
from ray.rllib.env.base_env import BaseEnv
from ray.rllib.env.env_context import EnvContext
from ray.rllib.evaluation.episode_v2 import EpisodeV2
from ray.rllib.policy import Policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.annotations import (
OldAPIStack,
override,
OverrideToImplementCustomLogic,
PublicAPI,
)
from ray.rllib.utils.metrics.metrics_logger import MetricsLogger
from ray.rllib.utils.typing import AgentID, EnvType, EpisodeType, PolicyID
from ray.tune.callback import _CallbackMeta
# Import psutil after ray so the packaged version is used.
import psutil
if TYPE_CHECKING:
from ray.rllib.algorithms.algorithm import Algorithm
from ray.rllib.env.env_runner import EnvRunner
from ray.rllib.env.env_runner_group import EnvRunnerGroup
@PublicAPI
class RLlibCallback(metaclass=_CallbackMeta):
"""Abstract base class for RLlib callbacks (similar to Keras callbacks).
These callbacks can be used for custom metrics and custom postprocessing.
By default, all of these callbacks are no-ops. To configure custom training
callbacks, subclass RLlibCallback and then set
{"callbacks": YourCallbacksClass} in the algo config.
"""
@OverrideToImplementCustomLogic
def on_algorithm_init(
self,
*,
algorithm: "Algorithm",
metrics_logger: Optional[MetricsLogger] = None,
**kwargs,
) -> None:
"""Callback run when a new Algorithm instance has finished setup.
This method gets called at the end of Algorithm.setup() after all
the initialization is done, and before actually training starts.
Args:
algorithm: Reference to the Algorithm instance.
metrics_logger: The MetricsLogger object inside the `Algorithm`. Can be
used to log custom metrics after algo initialization.
kwargs: Forward compatibility placeholder.
"""
pass
@OverrideToImplementCustomLogic
def on_train_result(
self,
*,
algorithm: "Algorithm",
metrics_logger: Optional[MetricsLogger] = None,
result: dict,
**kwargs,
) -> None:
"""Called at the end of Algorithm.train().
Args:
algorithm: Current Algorithm instance.
metrics_logger: The MetricsLogger object inside the Algorithm. Can be
used to log custom metrics after traing results are available.
result: Dict of results returned from Algorithm.train() call.
You can mutate this object to add additional metrics.
kwargs: Forward compatibility placeholder.
"""
pass
@OverrideToImplementCustomLogic
def on_evaluate_start(
self,
*,
algorithm: "Algorithm",
metrics_logger: Optional[MetricsLogger] = None,
**kwargs,
) -> None:
"""Callback before evaluation starts.
This method gets called at the beginning of Algorithm.evaluate().
Args:
algorithm: Reference to the algorithm instance.
metrics_logger: The MetricsLogger object inside the `Algorithm`. Can be
used to log custom metrics before running the next round of evaluation.
kwargs: Forward compatibility placeholder.
"""
pass
@OverrideToImplementCustomLogic
def on_evaluate_end(
self,
*,
algorithm: "Algorithm",
metrics_logger: Optional[MetricsLogger] = None,
evaluation_metrics: dict,
**kwargs,
) -> None:
"""Runs when the evaluation is done.
Runs at the end of Algorithm.evaluate().
Args:
algorithm: Reference to the algorithm instance.
metrics_logger: The MetricsLogger object inside the `Algorithm`. Can be
used to log custom metrics after the most recent evaluation round.
evaluation_metrics: Results dict to be returned from algorithm.evaluate().
You can mutate this object to add additional metrics.
kwargs: Forward compatibility placeholder.
"""
pass
@OverrideToImplementCustomLogic
def on_env_runners_recreated(
self,
*,
algorithm: "Algorithm",
env_runner_group: "EnvRunnerGroup",
env_runner_indices: List[int],
is_evaluation: bool,
**kwargs,
) -> None:
"""Callback run after one or more EnvRunner actors have been recreated.
You can access and change the EnvRunners in question through the following code
snippet inside your custom override of this method:
.. testcode::
from ray.rllib.callbacks.callbacks import RLlibCallback
class MyCallbacks(RLlibCallback):
def on_env_runners_recreated(
self,
*,
algorithm,
env_runner_group,
env_runner_indices,
is_evaluation,
**kwargs,
):
# Define what you would like to do on the recreated EnvRunner:
def func(env_runner):
# Here, we just set some arbitrary property to 1.
if is_evaluation:
env_runner._custom_property_for_evaluation = 1
else:
env_runner._custom_property_for_training = 1
# Use the `foreach_env_runner` method of the worker set and
# only loop through those worker IDs that have been restarted.
# Note that we set `local_worker=False` to NOT include it (local
# workers are never recreated; if they fail, the entire Algorithm
# fails).
env_runner_group.foreach_env_runner(
func,
remote_worker_ids=env_runner_indices,
local_env_runner=False,
)
Args:
algorithm: Reference to the Algorithm instance.
env_runner_group: The EnvRunnerGroup object in which the workers in question
reside. You can use a `env_runner_group.foreach_env_runner(
remote_worker_ids=..., local_env_runner=False)` method call to execute
custom code on the recreated (remote) workers. Note that the local
worker is never recreated as a failure of this would also crash the
Algorithm.
env_runner_indices: The list of (remote) worker IDs that have been
recreated.
is_evaluation: Whether `worker_set` is the evaluation EnvRunnerGroup
(located in `Algorithm.eval_env_runner_group`) or not.
"""
pass
@OverrideToImplementCustomLogic
def on_checkpoint_loaded(
self,
*,
algorithm: "Algorithm",
**kwargs,
) -> None:
"""Callback run when an Algorithm has loaded a new state from a checkpoint.
This method gets called at the end of `Algorithm.load_checkpoint()`.
Args:
algorithm: Reference to the Algorithm instance.
kwargs: Forward compatibility placeholder.
"""
pass
@OverrideToImplementCustomLogic
def on_environment_created(
self,
*,
env_runner: "EnvRunner",
metrics_logger: Optional[MetricsLogger] = None,
env: gym.Env,
env_context: EnvContext,
**kwargs,
) -> None:
"""Callback run when a new environment object has been created.
Note: This only applies to the new API stack. The env used is usually a
gym.Env (or more specifically a gym.vector.Env).
Args:
env_runner: Reference to the current EnvRunner instance.
metrics_logger: The MetricsLogger object inside the `env_runner`. Can be
used to log custom metrics after environment creation.
env: The environment object that has been created on `env_runner`. This is
usually a gym.Env (or a gym.vector.Env) object.
env_context: The `EnvContext` object that has been passed to the
`gym.make()` call as kwargs (and to the gym.Env as `config`). It should
have all the config key/value pairs in it as well as the
EnvContext-typical properties: `worker_index`, `num_workers`, and
`remote`.
kwargs: Forward compatibility placeholder.
"""
pass
@OverrideToImplementCustomLogic
def on_episode_created(
self,
*,
# TODO (sven): Deprecate Episode/EpisodeV2 with new API stack.
episode: Union[EpisodeType, EpisodeV2],
# TODO (sven): Deprecate this arg new API stack (in favor of `env_runner`).
worker: Optional["EnvRunner"] = None,
env_runner: Optional["EnvRunner"] = None,
metrics_logger: Optional[MetricsLogger] = None,
# TODO (sven): Deprecate this arg new API stack (in favor of `env`).
base_env: Optional[BaseEnv] = None,
env: Optional[gym.Env] = None,
# TODO (sven): Deprecate this arg new API stack (in favor of `rl_module`).
policies: Optional[Dict[PolicyID, Policy]] = None,
rl_module: Optional[RLModule] = None,
env_index: int,
**kwargs,
) -> None:
"""Callback run when a new episode is created (but has not started yet!).
This method gets called after a new SingleAgentEpisode or MultiAgentEpisode
instance has been created. This happens before the respective sub-environment's
`reset()` is called by RLlib.
1) SingleAgentEpisode/MultiAgentEpisode created: This callback is called.
2) Respective sub-environment (gym.Env) is `reset()`.
3) Callback `on_episode_start` is called.
4) Stepping through sub-environment/episode commences.
Args:
episode: The newly created SingleAgentEpisode or MultiAgentEpisode.
This is the episode that is about to be started with an upcoming
`env.reset()`. Only after this reset call, the `on_episode_start`
callback will be called.
env_runner: Reference to the current EnvRunner.
metrics_logger: The MetricsLogger object inside the `env_runner`. Can be
used to log custom metrics after Episode creation.
env: The gym.Env running the episode.
rl_module: The RLModule used to compute actions for stepping the env. In
single-agent mode, this is a simple RLModule, in multi-agent mode, this
is a MultiRLModule.
env_index: The index of the sub-environment that is about to be reset.
kwargs: Forward compatibility placeholder.
"""
pass
@OverrideToImplementCustomLogic
def on_episode_start(
self,
*,
episode: Union[EpisodeType, EpisodeV2],
env_runner: Optional["EnvRunner"] = None,
metrics_logger: Optional[MetricsLogger] = None,
env: Optional[gym.Env] = None,
env_index: int,
rl_module: Optional[RLModule] = None,
# TODO (sven): Deprecate these args.
worker: Optional["EnvRunner"] = None,
base_env: Optional[BaseEnv] = None,
policies: Optional[Dict[PolicyID, Policy]] = None,
**kwargs,
) -> None:
"""Callback run right after an Episode has been started.
This method gets called after a SingleAgentEpisode or MultiAgentEpisode instance
has been reset with a call to `env.reset()` by the EnvRunner.
1) Single-/MultiAgentEpisode created: `on_episode_created()` is called.
2) Respective sub-environment (gym.Env) is `reset()`.
3) Single-/MultiAgentEpisode starts: This callback is called.
4) Stepping through sub-environment/episode commences.
Args:
episode: The just started (after `env.reset()`) SingleAgentEpisode or
MultiAgentEpisode object.
env_runner: Reference to the EnvRunner running the env and episode.
metrics_logger: The MetricsLogger object inside the `env_runner`. Can be
used to log custom metrics during env/episode stepping.
env: The gym.Env or gym.vector.Env object running the started episode.
env_index: The index of the sub-environment that is about to be reset
(within the vector of sub-environments of the BaseEnv).
rl_module: The RLModule used to compute actions for stepping the env. In
single-agent mode, this is a simple RLModule, in multi-agent mode, this
is a MultiRLModule.
kwargs: Forward compatibility placeholder.
"""
pass
@OverrideToImplementCustomLogic
def on_episode_step(
self,
*,
episode: Union[EpisodeType, EpisodeV2],
env_runner: Optional["EnvRunner"] = None,
metrics_logger: Optional[MetricsLogger] = None,
env: Optional[gym.Env] = None,
env_index: int,
rl_module: Optional[RLModule] = None,
# TODO (sven): Deprecate these args.
worker: Optional["EnvRunner"] = None,
base_env: Optional[BaseEnv] = None,
policies: Optional[Dict[PolicyID, Policy]] = None,
**kwargs,
) -> None:
"""Called on each episode step (after the action(s) has/have been logged).
Note that on the new API stack, this callback is also called after the final
step of an episode, meaning when terminated/truncated are returned as True
from the `env.step()` call, but is still provided with the non-numpy'ized
episode object (meaning the data has NOT been converted to numpy arrays yet).
The exact time of the call of this callback is after `env.step([action])` and
also after the results of this step (observation, reward, terminated, truncated,
infos) have been logged to the given `episode` object.
Args:
episode: The just stepped SingleAgentEpisode or MultiAgentEpisode object
(after `env.step()` and after returned obs, rewards, etc.. have been
logged to the episode object).
env_runner: Reference to the EnvRunner running the env and episode.
metrics_logger: The MetricsLogger object inside the `env_runner`. Can be
used to log custom metrics during env/episode stepping.
env: The gym.Env or gym.vector.Env object running the started episode.
env_index: The index of the sub-environment that has just been stepped.
rl_module: The RLModule used to compute actions for stepping the env. In
single-agent mode, this is a simple RLModule, in multi-agent mode, this
is a MultiRLModule.
kwargs: Forward compatibility placeholder.
"""
pass
@OverrideToImplementCustomLogic
def on_episode_end(
self,
*,
episode: Union[EpisodeType, EpisodeV2],
env_runner: Optional["EnvRunner"] = None,
metrics_logger: Optional[MetricsLogger] = None,
env: Optional[gym.Env] = None,
env_index: int,
rl_module: Optional[RLModule] = None,
# TODO (sven): Deprecate these args.
worker: Optional["EnvRunner"] = None,
base_env: Optional[BaseEnv] = None,
policies: Optional[Dict[PolicyID, Policy]] = None,
**kwargs,
) -> None:
"""Called when an episode is done (after terminated/truncated have been logged).
The exact time of the call of this callback is after `env.step([action])` and
also after the results of this step (observation, reward, terminated, truncated,
infos) have been logged to the given `episode` object, where either terminated
or truncated were True:
- The env is stepped: `final_obs, rewards, ... = env.step([action])`
- The step results are logged `episode.add_env_step(final_obs, rewards)`
- Callback `on_episode_step` is fired.
- Another env-to-module connector call is made (even though we won't need any
RLModule forward pass anymore). We make this additional call to ensure that in
case users use the connector pipeline to process observations (and write them
back into the episode), the episode object has all observations - even the
terminal one - properly processed.
- ---> This callback `on_episode_end()` is fired. <---
- The episode is numpy'ized (i.e. lists of obs/rewards/actions/etc.. are
converted into numpy arrays).
Args:
episode: The terminated/truncated SingleAgent- or MultiAgentEpisode object
(after `env.step()` that returned terminated=True OR truncated=True and
after the returned obs, rewards, etc.. have been logged to the episode
object). Note that this method is still called before(!) the episode
object is numpy'ized, meaning all its timestep data is still present in
lists of individual timestep data.
env_runner: Reference to the EnvRunner running the env and episode.
metrics_logger: The MetricsLogger object inside the `env_runner`. Can be
used to log custom metrics during env/episode stepping.
env: The gym.Env or gym.vector.Env object running the started episode.
env_index: The index of the sub-environment that has just been terminated
or truncated.
rl_module: The RLModule used to compute actions for stepping the env. In
single-agent mode, this is a simple RLModule, in multi-agent mode, this
is a MultiRLModule.
kwargs: Forward compatibility placeholder.
"""
pass
@OverrideToImplementCustomLogic
def on_sample_end(
self,
*,
env_runner: Optional["EnvRunner"] = None,
metrics_logger: Optional[MetricsLogger] = None,
samples: Union[SampleBatch, List[EpisodeType]],
# TODO (sven): Deprecate these args.
worker: Optional["EnvRunner"] = None,
**kwargs,
) -> None:
"""Called at the end of `EnvRunner.sample()`.
Args:
env_runner: Reference to the current EnvRunner object.
metrics_logger: The MetricsLogger object inside the `env_runner`. Can be
used to log custom metrics during env/episode stepping.
samples: Lists of SingleAgentEpisode or MultiAgentEpisode instances to be
returned. You can mutate the episodes to modify the returned training
data.
kwargs: Forward compatibility placeholder.
"""
pass
@OldAPIStack
def on_sub_environment_created(
self,
*,
worker: "EnvRunner",
sub_environment: EnvType,
env_context: EnvContext,
env_index: Optional[int] = None,
**kwargs,
) -> None:
"""Callback run when a new sub-environment has been created.
This method gets called after each sub-environment (usually a
gym.Env) has been created, validated (RLlib built-in validation
+ possible custom validation function implemented by overriding
`Algorithm.validate_env()`), wrapped (e.g. video-wrapper), and seeded.
Args:
worker: Reference to the current EnvRunner.
sub_environment: The sub-environment instance that has been
created. This is usually a gym.Env object.
env_context: The `EnvContext` object that has been passed to
the env's constructor.
env_index: The index of the sub-environment that has been created
(within the vector of sub-environments of the gym.vector.Env).
kwargs: Forward compatibility placeholder.
"""
pass
@OldAPIStack
def on_postprocess_trajectory(
self,
*,
worker: "EnvRunner",
episode,
agent_id: AgentID,
policy_id: PolicyID,
policies: Dict[PolicyID, Policy],
postprocessed_batch: SampleBatch,
original_batches: Dict[AgentID, Tuple[Policy, SampleBatch]],
**kwargs,
) -> None:
"""Called immediately after a policy's postprocess_fn is called.
You can use this callback to do additional postprocessing for a policy,
including looking at the trajectory data of other agents in multi-agent
settings.
Args:
worker: Reference to the current rollout worker.
episode: Episode object.
agent_id: Id of the current agent.
policy_id: Id of the current policy for the agent.
policies: Dict mapping policy IDs to policy objects. In single
agent mode there will only be a single "default_policy".
postprocessed_batch: The postprocessed sample batch
for this agent. You can mutate this object to apply your own
trajectory postprocessing.
original_batches: Dict mapping agent IDs to their unpostprocessed
trajectory data. You should not mutate this object.
kwargs: Forward compatibility placeholder.
"""
pass
@OldAPIStack
def on_create_policy(self, *, policy_id: PolicyID, policy: Policy) -> None:
"""Callback run whenever a new policy is added to an algorithm.
Args:
policy_id: ID of the newly created policy.
policy: The policy just created.
"""
pass
@OldAPIStack
def on_learn_on_batch(
self, *, policy: Policy, train_batch: SampleBatch, result: dict, **kwargs
) -> None:
"""Called at the beginning of Policy.learn_on_batch().
Note: This is called before 0-padding via
`pad_batch_to_sequences_of_same_size`.
Also note, SampleBatch.INFOS column will not be available on
train_batch within this callback if framework is tf1, due to
the fact that tf1 static graph would mistake it as part of the
input dict if present.
It is available though, for tf2 and torch frameworks.
Args:
policy: Reference to the current Policy object.
train_batch: SampleBatch to be trained on. You can
mutate this object to modify the samples generated.
result: A results dict to add custom metrics to.
kwargs: Forward compatibility placeholder.
"""
pass
# Deprecated, use `on_env_runners_recreated`, instead.
def on_workers_recreated(
self,
*,
algorithm,
worker_set,
worker_ids,
is_evaluation,
**kwargs,
) -> None:
pass
class MemoryTrackingCallbacks(RLlibCallback):
"""MemoryTrackingCallbacks can be used to trace and track memory usage
in rollout workers.
The Memory Tracking Callbacks uses tracemalloc and psutil to track
python allocations during rollouts,
in training or evaluation.
The tracking data is logged to the custom_metrics of an episode and
can therefore be viewed in tensorboard
(or in WandB etc..)
Add MemoryTrackingCallbacks callback to the tune config
e.g. { ...'callbacks': MemoryTrackingCallbacks ...}
Note:
This class is meant for debugging and should not be used
in production code as tracemalloc incurs
a significant slowdown in execution speed.
"""
def __init__(self):
super().__init__()
# Will track the top 10 lines where memory is allocated
tracemalloc.start(10)
@override(RLlibCallback)
def on_episode_end(
self,
*,
episode: Union[EpisodeType, EpisodeV2],
env_runner: Optional["EnvRunner"] = None,
metrics_logger: Optional[MetricsLogger] = None,
env: Optional[gym.Env] = None,
env_index: int,
rl_module: Optional[RLModule] = None,
# TODO (sven): Deprecate these args.
worker: Optional["EnvRunner"] = None,
base_env: Optional[BaseEnv] = None,
policies: Optional[Dict[PolicyID, Policy]] = None,
**kwargs,
) -> None:
gc.collect()
snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics("lineno")
for stat in top_stats[:10]:
count = stat.count
# Convert total size from Bytes to KiB.
size = stat.size / 1024
trace = str(stat.traceback)
episode.custom_metrics[f"tracemalloc/{trace}/size"] = size
episode.custom_metrics[f"tracemalloc/{trace}/count"] = count
process = psutil.Process(os.getpid())
worker_rss = process.memory_info().rss
worker_vms = process.memory_info().vms
if platform.system() == "Linux":
# This is only available on Linux
worker_data = process.memory_info().data
episode.custom_metrics["tracemalloc/worker/data"] = worker_data
episode.custom_metrics["tracemalloc/worker/rss"] = worker_rss
episode.custom_metrics["tracemalloc/worker/vms"] = worker_vms