forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessors.py
447 lines (371 loc) · 16.2 KB
/
preprocessors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
from collections import OrderedDict
import logging
import numpy as np
import gymnasium as gym
from typing import Any, List
from ray.rllib.utils.annotations import OldAPIStack, override
from ray.rllib.utils.spaces.repeated import Repeated
from ray.rllib.utils.typing import TensorType
from ray.rllib.utils.images import resize
from ray.rllib.utils.spaces.space_utils import convert_element_to_space_type
ATARI_OBS_SHAPE = (210, 160, 3)
ATARI_RAM_OBS_SHAPE = (128,)
# Only validate env observations vs the observation space every n times in a
# Preprocessor.
OBS_VALIDATION_INTERVAL = 100
logger = logging.getLogger(__name__)
@OldAPIStack
class Preprocessor:
"""Defines an abstract observation preprocessor function.
Attributes:
shape (List[int]): Shape of the preprocessed output.
"""
def __init__(self, obs_space: gym.Space, options: dict = None):
_legacy_patch_shapes(obs_space)
self._obs_space = obs_space
if not options:
from ray.rllib.models.catalog import MODEL_DEFAULTS
self._options = MODEL_DEFAULTS.copy()
else:
self._options = options
self.shape = self._init_shape(obs_space, self._options)
self._size = int(np.prod(self.shape))
self._i = 0
self._obs_for_type_matching = self._obs_space.sample()
def _init_shape(self, obs_space: gym.Space, options: dict) -> List[int]:
"""Returns the shape after preprocessing."""
raise NotImplementedError
def transform(self, observation: TensorType) -> np.ndarray:
"""Returns the preprocessed observation."""
raise NotImplementedError
def write(self, observation: TensorType, array: np.ndarray, offset: int) -> None:
"""Alternative to transform for more efficient flattening."""
array[offset : offset + self._size] = self.transform(observation)
def check_shape(self, observation: Any) -> None:
"""Checks the shape of the given observation."""
if self._i % OBS_VALIDATION_INTERVAL == 0:
# Convert lists to np.ndarrays.
if type(observation) is list and isinstance(
self._obs_space, gym.spaces.Box
):
observation = np.array(observation).astype(np.float32)
if not self._obs_space.contains(observation):
observation = convert_element_to_space_type(
observation, self._obs_for_type_matching
)
try:
if not self._obs_space.contains(observation):
raise ValueError(
"Observation ({} dtype={}) outside given space ({})!".format(
observation,
observation.dtype
if isinstance(self._obs_space, gym.spaces.Box)
else None,
self._obs_space,
)
)
except AttributeError as e:
raise ValueError(
"Observation for a Box/MultiBinary/MultiDiscrete space "
"should be an np.array, not a Python list.",
observation,
) from e
self._i += 1
@property
def size(self) -> int:
return self._size
@property
def observation_space(self) -> gym.Space:
obs_space = gym.spaces.Box(-1.0, 1.0, self.shape, dtype=np.float32)
# Stash the unwrapped space so that we can unwrap dict and tuple spaces
# automatically in modelv2.py
classes = (
DictFlatteningPreprocessor,
OneHotPreprocessor,
RepeatedValuesPreprocessor,
TupleFlatteningPreprocessor,
AtariRamPreprocessor,
GenericPixelPreprocessor,
)
if isinstance(self, classes):
obs_space.original_space = self._obs_space
return obs_space
@OldAPIStack
class GenericPixelPreprocessor(Preprocessor):
"""Generic image preprocessor.
Note: for Atari games, use config {"preprocessor_pref": "deepmind"}
instead for deepmind-style Atari preprocessing.
"""
@override(Preprocessor)
def _init_shape(self, obs_space: gym.Space, options: dict) -> List[int]:
self._grayscale = options.get("grayscale")
self._zero_mean = options.get("zero_mean")
self._dim = options.get("dim")
if self._grayscale:
shape = (self._dim, self._dim, 1)
else:
shape = (self._dim, self._dim, 3)
return shape
@override(Preprocessor)
def transform(self, observation: TensorType) -> np.ndarray:
"""Downsamples images from (210, 160, 3) by the configured factor."""
self.check_shape(observation)
scaled = observation[25:-25, :, :]
if self._dim < 84:
scaled = resize(scaled, height=84, width=84)
# OpenAI: Resize by half, then down to 42x42 (essentially mipmapping).
# If we resize directly we lose pixels that, when mapped to 42x42,
# aren't close enough to the pixel boundary.
scaled = resize(scaled, height=self._dim, width=self._dim)
if self._grayscale:
scaled = scaled.mean(2)
scaled = scaled.astype(np.float32)
# Rescale needed for maintaining 1 channel
scaled = np.reshape(scaled, [self._dim, self._dim, 1])
if self._zero_mean:
scaled = (scaled - 128) / 128
else:
scaled *= 1.0 / 255.0
return scaled
@OldAPIStack
class AtariRamPreprocessor(Preprocessor):
@override(Preprocessor)
def _init_shape(self, obs_space: gym.Space, options: dict) -> List[int]:
return (128,)
@override(Preprocessor)
def transform(self, observation: TensorType) -> np.ndarray:
self.check_shape(observation)
return (observation.astype("float32") - 128) / 128
@OldAPIStack
class OneHotPreprocessor(Preprocessor):
"""One-hot preprocessor for Discrete and MultiDiscrete spaces.
.. testcode::
:skipif: True
self.transform(Discrete(3).sample())
.. testoutput::
np.array([0.0, 1.0, 0.0])
.. testcode::
:skipif: True
self.transform(MultiDiscrete([2, 3]).sample())
.. testoutput::
np.array([0.0, 1.0, 0.0, 0.0, 1.0])
"""
@override(Preprocessor)
def _init_shape(self, obs_space: gym.Space, options: dict) -> List[int]:
if isinstance(obs_space, gym.spaces.Discrete):
return (self._obs_space.n,)
else:
return (np.sum(self._obs_space.nvec),)
@override(Preprocessor)
def transform(self, observation: TensorType) -> np.ndarray:
self.check_shape(observation)
return gym.spaces.utils.flatten(self._obs_space, observation).astype(np.float32)
@override(Preprocessor)
def write(self, observation: TensorType, array: np.ndarray, offset: int) -> None:
array[offset : offset + self.size] = self.transform(observation)
@OldAPIStack
class NoPreprocessor(Preprocessor):
@override(Preprocessor)
def _init_shape(self, obs_space: gym.Space, options: dict) -> List[int]:
return self._obs_space.shape
@override(Preprocessor)
def transform(self, observation: TensorType) -> np.ndarray:
self.check_shape(observation)
return observation
@override(Preprocessor)
def write(self, observation: TensorType, array: np.ndarray, offset: int) -> None:
array[offset : offset + self._size] = np.array(observation, copy=False).ravel()
@property
@override(Preprocessor)
def observation_space(self) -> gym.Space:
return self._obs_space
@OldAPIStack
class MultiBinaryPreprocessor(Preprocessor):
"""Preprocessor that turns a MultiBinary space into a Box.
Note: Before RLModules were introduced, RLlib's ModelCatalogV2 would produce
ComplexInputNetworks that treat MultiBinary spaces as Boxes. This preprocessor is
needed to get rid of the ComplexInputNetworks and use RLModules instead because
RLModules lack the logic to handle MultiBinary or other non-Box spaces.
"""
@override(Preprocessor)
def _init_shape(self, obs_space: gym.Space, options: dict) -> List[int]:
return self._obs_space.shape
@override(Preprocessor)
def transform(self, observation: TensorType) -> np.ndarray:
# The shape stays the same, but the dtype changes.
self.check_shape(observation)
return observation.astype(np.float32)
@override(Preprocessor)
def write(self, observation: TensorType, array: np.ndarray, offset: int) -> None:
array[offset : offset + self._size] = np.array(observation, copy=False).ravel()
@property
@override(Preprocessor)
def observation_space(self) -> gym.Space:
obs_space = gym.spaces.Box(0.0, 1.0, self.shape, dtype=np.float32)
obs_space.original_space = self._obs_space
return obs_space
@OldAPIStack
class TupleFlatteningPreprocessor(Preprocessor):
"""Preprocesses each tuple element, then flattens it all into a vector.
RLlib models will unpack the flattened output before _build_layers_v2().
"""
@override(Preprocessor)
def _init_shape(self, obs_space: gym.Space, options: dict) -> List[int]:
assert isinstance(self._obs_space, gym.spaces.Tuple)
size = 0
self.preprocessors = []
for i in range(len(self._obs_space.spaces)):
space = self._obs_space.spaces[i]
logger.debug("Creating sub-preprocessor for {}".format(space))
preprocessor_class = get_preprocessor(space)
if preprocessor_class is not None:
preprocessor = preprocessor_class(space, self._options)
size += preprocessor.size
else:
preprocessor = None
size += int(np.prod(space.shape))
self.preprocessors.append(preprocessor)
return (size,)
@override(Preprocessor)
def transform(self, observation: TensorType) -> np.ndarray:
self.check_shape(observation)
array = np.zeros(self.shape, dtype=np.float32)
self.write(observation, array, 0)
return array
@override(Preprocessor)
def write(self, observation: TensorType, array: np.ndarray, offset: int) -> None:
assert len(observation) == len(self.preprocessors), observation
for o, p in zip(observation, self.preprocessors):
p.write(o, array, offset)
offset += p.size
@OldAPIStack
class DictFlatteningPreprocessor(Preprocessor):
"""Preprocesses each dict value, then flattens it all into a vector.
RLlib models will unpack the flattened output before _build_layers_v2().
"""
@override(Preprocessor)
def _init_shape(self, obs_space: gym.Space, options: dict) -> List[int]:
assert isinstance(self._obs_space, gym.spaces.Dict)
size = 0
self.preprocessors = []
for space in self._obs_space.spaces.values():
logger.debug("Creating sub-preprocessor for {}".format(space))
preprocessor_class = get_preprocessor(space)
if preprocessor_class is not None:
preprocessor = preprocessor_class(space, self._options)
size += preprocessor.size
else:
preprocessor = None
size += int(np.prod(space.shape))
self.preprocessors.append(preprocessor)
return (size,)
@override(Preprocessor)
def transform(self, observation: TensorType) -> np.ndarray:
self.check_shape(observation)
array = np.zeros(self.shape, dtype=np.float32)
self.write(observation, array, 0)
return array
@override(Preprocessor)
def write(self, observation: TensorType, array: np.ndarray, offset: int) -> None:
if not isinstance(observation, OrderedDict):
observation = OrderedDict(sorted(observation.items()))
assert len(observation) == len(self.preprocessors), (
len(observation),
len(self.preprocessors),
)
for o, p in zip(observation.values(), self.preprocessors):
p.write(o, array, offset)
offset += p.size
@OldAPIStack
class RepeatedValuesPreprocessor(Preprocessor):
"""Pads and batches the variable-length list value."""
@override(Preprocessor)
def _init_shape(self, obs_space: gym.Space, options: dict) -> List[int]:
assert isinstance(self._obs_space, Repeated)
child_space = obs_space.child_space
self.child_preprocessor = get_preprocessor(child_space)(
child_space, self._options
)
# The first slot encodes the list length.
size = 1 + self.child_preprocessor.size * obs_space.max_len
return (size,)
@override(Preprocessor)
def transform(self, observation: TensorType) -> np.ndarray:
array = np.zeros(self.shape)
if isinstance(observation, list):
for elem in observation:
self.child_preprocessor.check_shape(elem)
else:
pass # ValueError will be raised in write() below.
self.write(observation, array, 0)
return array
@override(Preprocessor)
def write(self, observation: TensorType, array: np.ndarray, offset: int) -> None:
if not isinstance(observation, (list, np.ndarray)):
raise ValueError(
"Input for {} must be list type, got {}".format(self, observation)
)
elif len(observation) > self._obs_space.max_len:
raise ValueError(
"Input {} exceeds max len of space {}".format(
observation, self._obs_space.max_len
)
)
# The first slot encodes the list length.
array[offset] = len(observation)
for i, elem in enumerate(observation):
offset_i = offset + 1 + i * self.child_preprocessor.size
self.child_preprocessor.write(elem, array, offset_i)
@OldAPIStack
def get_preprocessor(space: gym.Space, include_multi_binary=False) -> type:
"""Returns an appropriate preprocessor class for the given space."""
_legacy_patch_shapes(space)
obs_shape = space.shape
if isinstance(space, (gym.spaces.Discrete, gym.spaces.MultiDiscrete)):
preprocessor = OneHotPreprocessor
elif obs_shape == ATARI_OBS_SHAPE:
logger.debug(
"Defaulting to RLlib's GenericPixelPreprocessor because input "
"space has the atari-typical shape {}. Turn this behaviour off by setting "
"`preprocessor_pref=None` or "
"`preprocessor_pref='deepmind'` or disabling the preprocessing API "
"altogether with `_disable_preprocessor_api=True`.".format(ATARI_OBS_SHAPE)
)
preprocessor = GenericPixelPreprocessor
elif obs_shape == ATARI_RAM_OBS_SHAPE:
logger.debug(
"Defaulting to RLlib's AtariRamPreprocessor because input "
"space has the atari-typical shape {}. Turn this behaviour off by setting "
"`preprocessor_pref=None` or "
"`preprocessor_pref='deepmind' or disabling the preprocessing API "
"altogether with `_disable_preprocessor_api=True`."
"`.".format(ATARI_OBS_SHAPE)
)
preprocessor = AtariRamPreprocessor
elif isinstance(space, gym.spaces.Tuple):
preprocessor = TupleFlatteningPreprocessor
elif isinstance(space, gym.spaces.Dict):
preprocessor = DictFlatteningPreprocessor
elif isinstance(space, Repeated):
preprocessor = RepeatedValuesPreprocessor
# We usually only want to include this when using RLModules
elif isinstance(space, gym.spaces.MultiBinary) and include_multi_binary:
preprocessor = MultiBinaryPreprocessor
else:
preprocessor = NoPreprocessor
return preprocessor
def _legacy_patch_shapes(space: gym.Space) -> List[int]:
"""Assigns shapes to spaces that don't have shapes.
This is only needed for older gym versions that don't set shapes properly
for Tuple and Discrete spaces.
"""
if not hasattr(space, "shape"):
if isinstance(space, gym.spaces.Discrete):
space.shape = ()
elif isinstance(space, gym.spaces.Tuple):
shapes = []
for s in space.spaces:
shape = _legacy_patch_shapes(s)
shapes.append(shape)
space.shape = tuple(shapes)
return space.shape