forked from project-gemmi/gemmi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsfcalc.cpp
893 lines (843 loc) · 35 KB
/
sfcalc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
// Copyright 2019 Global Phasing Ltd.
//
// Calculate structure factors from a molecular model.
#include <stdio.h>
#include <complex>
#include <gemmi/assembly.hpp> // for expand_ncs
#include <gemmi/calculate.hpp> // for expand_box
#include <gemmi/ccp4.hpp> // for Ccp4
#include <gemmi/fileutil.hpp> // for file_open
#include <gemmi/fourier.hpp>
#include <gemmi/fprime.hpp> // for cromer_liberman
#include <gemmi/gz.hpp> // for MaybeGzipped
#include <gemmi/it92.hpp> // for IT92
#include <gemmi/c4322.hpp> // for C4322
#include <gemmi/neutron92.hpp> // for Neutron92
#include <gemmi/math.hpp> // for sq
#include <gemmi/mtz.hpp> // for Mtz
#include <gemmi/dencalc.hpp> // for DensityCalculator
#include <gemmi/scaling.hpp> // for Scaling
#include <gemmi/sfcalc.hpp> // for calculate_structure_factor
#include <gemmi/smcif.hpp> // for make_small_structure_from_block
#include <gemmi/solmask.hpp> // for SolventMasker
#include <gemmi/read_cif.hpp> // for read_cif_gz
#include <gemmi/mmread_gz.hpp> // for read_structure_gz
#include "timer.h" // for Timer
#define GEMMI_PROG sfcalc
#include "options.h"
namespace {
enum OptionIndex {
Hkl=4, Dmin, For, NormalizeIt92, UseCharge, Rate, Blur, RCut,
Test, WriteMap, ToMtz, Compare, FLabel, PhiLabel,
CifFp, Wavelength, Unknown, NoAniso, Margin, ScaleTo, SigmaCutoff,
MaskSpacing, RadiiSet, Rprobe, Rshrink, MaskFile, Ksolv, Bsolv, Kov, Baniso
};
struct SfCalcArg: public Arg {
static option::ArgStatus FormFactors(const option::Option& option, bool msg) {
return Arg::Choice(option, msg, {"xray", "electron", "neutron", "mott-bethe"});
}
static option::ArgStatus Radii(const option::Option& option, bool msg) {
return Arg::Choice(option, msg, {"vdw", "cctbx", "refmac"});
}
static option::ArgStatus Float6(const option::Option& option, bool msg) {
if (option.arg) {
char* endptr = nullptr;
int counter = 0;
do {
(void) std::strtod(endptr ? endptr + 1 : option.arg, &endptr);
++counter;
} while (*endptr == ':');
if (counter == 6 && *endptr == '\0')
return option::ARG_OK;
}
if (msg)
fprintf(stderr, "Option '%.*s' requires six colon-separated numbers "
"as an argument,\n for example: %.*s=2.1:3:4:0:0:0\n",
option.namelen, option.name, option.namelen, option.name);
return option::ARG_ILLEGAL;
}
};
const option::Descriptor Usage[] = {
{ NoOp, 0, "", "", Arg::None,
"Usage:\n " EXE_NAME " [options] INPUT_FILE\n\n"
"Calculates structure factors of a model (PDB, mmCIF or SMX CIF file).\n\n"
"Uses FFT to calculate all reflections up to requested resolution for MX\n"
"files. Otherwise, for SMX and --hkl, F's are calculated directly.\n"
"This program can also compare F's calculated directly with values\n"
"calculated through FFT or with values read from a reflection file.\n"
"\nOptions:"},
CommonUsage[Help],
CommonUsage[Version],
CommonUsage[Verbose],
{ Hkl, 0, "", "hkl", Arg::Int3,
" --hkl=H,K,L \tCalculate structure factor F_hkl." },
{ Dmin, 0, "", "dmin", Arg::Float,
" --dmin=NUM \tCalculate structure factors up to given resolution." },
{ For, 0, "", "for", SfCalcArg::FormFactors,
" --for=TYPE \tTYPE is xray (default), electron, neutron or mott-bethe." },
{ NormalizeIt92, 0, "", "normalize-it92", Arg::None,
" --normalize-it92 \tNormalize X-ray form factors (a tiny change)." },
{ UseCharge, 0, "", "use-charge", Arg::None,
" --use-charge \tUse X-ray form factors with charges when available." },
{ CifFp, 0, "", "ciffp", Arg::None,
" --ciffp \tRead f' from _atom_type_scat_dispersion_real in CIF." },
{ Wavelength, 0, "w", "wavelength", Arg::Float,
" --wavelength=NUM \tWavelength [A] for calculation of f' "
"(use --wavelength=0 or -w0 to ignore anomalous scattering)." },
{ Unknown, 0, "", "unknown", Arg::Required,
" --unknown=SYMBOL \tUse form factor of SYMBOL for unknown atoms." },
{ NoAniso, 0, "", "noaniso", Arg::None,
" --noaniso \tIgnore anisotropic ADPs." },
{ Margin, 0, "", "margin", Arg::Float,
" --margin=NUM \tFor non-crystal use bounding box w/ margin (default: 10)." },
{ NoOp, 0, "", "", Arg::None,
"\nOptions for density and FFT calculations (with --dmin):" },
{ Rate, 0, "", "rate", Arg::Float,
" --rate=NUM \tShannon rate used for grid spacing (default: 1.5)." },
{ Blur, 0, "", "blur", Arg::Float,
" --blur=NUM \tB added for Gaussian blurring (default: auto)." },
{ RCut, 0, "", "rcut", Arg::Float,
" --rcut=Y \tUse atomic radius r such that rho(r) < Y (default: 1e-5)." },
{ Test, 0, "", "test", Arg::Optional,
" --test[=CACHE] \tCalculate exact values and report differences (slow)." },
{ WriteMap, 0, "", "write-map", Arg::Required,
" --write-map=FILE \tWrite density (excl. bulk solvent) as CCP4 map." },
{ ToMtz, 0, "", "to-mtz", Arg::Required,
" --to-mtz=FILE \tWrite Fcalc to a new MTZ file." },
{ NoOp, 0, "", "", Arg::None, "\nOptions for anisotropic scaling (only w/ FFT):" },
{ ScaleTo, 0, "", "scale-to", Arg::Required,
" --scale-to=FILE:COL \tAnisotropic scaling to F from MTZ file."
"\n\tArgument: FILE[:FCOL[:SIGFCOL]] (defaults: F and SIGF)." },
{ SigmaCutoff, 0, "", "sigma-cutoff", Arg::Float,
" --sigma-cutoff=NUM \tUse only data with F/SIGF > NUM (default: 0)." },
// TODO: solvent option: mask, babinet, none
{ NoOp, 0, "", "", Arg::None,
"\nOptions for bulk solvent correction and scaling (only w/ FFT):" },
{ MaskSpacing, 0, "", "d-mask", Arg::Float,
" --d-mask=NUM \tSpacing of mask grid (default: same as for model)." },
{ RadiiSet, 0, "", "radii-set", SfCalcArg::Radii,
" --radii-set=SET \tSet of per-element radii, one of: vdw, cctbx, refmac." },
{ Rprobe, 0, "", "r-probe", Arg::Float,
" --r-probe=NUM \tValue added to VdW radius (default: 1.0A)." },
{ Rshrink, 0, "", "r-shrink", Arg::Float,
" --r-shrink=NUM \tValue for shrinking the solvent area (default: 1.1A)." },
{ MaskFile, 0, "", "solvent-mask", Arg::Required,
" --solvent-mask=FILE \tUse mask from file instead of calculating it." },
{ Ksolv, 0, "", "ksolv", Arg::Float,
" --ksolv=NUM \tValue (if optimizing: initial value) of k_solv." },
{ Bsolv, 0, "", "bsolv", Arg::Float,
" --bsolv=NUM \tValue (if optimizing: initial value) of B_solv." },
{ Kov, 0, "", "kov", Arg::Float,
" --kov=NUM \tValue (if optimizing: initial value) of k_overall." },
{ Baniso, 0, "", "baniso", SfCalcArg::Float6,
" --baniso=B11:...:B23 \tAnisotropic scale matrix (6 colon-separated numbers: "
"B11, B22, B33, B12, B13, B23)." },
{ NoOp, 0, "", "", Arg::None,
"\nOptions for comparing calculated values with values from a file:" },
{ Compare, 0, "", "compare", Arg::Required,
" --compare=FILE \tRe-calculate Fcalc and report differences." },
{ FLabel, 0, "", "f", Arg::Required,
" --f=LABEL \tMTZ column label (default: FC) or small molecule cif"
" tag (default: F_calc or F_squared_calc)." },
{ PhiLabel, 0, "", "phi", Arg::Required,
" --phi=LABEL \tMTZ column label (default: PHIC)." },
{ 0, 0, 0, 0, 0, 0 }
};
struct RefFile {
enum class Mode { None, Test, Compare, WriteMtz };
Mode mode = Mode::None;
const char* path = nullptr;
std::string f_label;
std::string phi_label;
};
void print_sf(std::complex<double> sf, const gemmi::Miller& hkl) {
printf(" (%d %d %d)\t%.8f\t%.6f\n",
hkl[0], hkl[1], hkl[2], std::abs(sf), gemmi::phase_in_angles(sf));
}
struct Comparator {
double sum_sq_diff = 0.;
double sum_sq1 = 0.;
double sum_sq2 = 0.;
double sum_abs = 0.;
double max_abs_df = 0.;
double sum_abs_diff = 0.;
int count = 0;
double phi_diff_weighted_sum = 0.;
template<typename T> void add(T value, T exact) {
double abs_df = std::abs(value - exact);
sum_sq_diff += abs_df * abs_df;
sum_sq1 += gemmi::sq(std::abs(value));
sum_sq2 += gemmi::sq(std::abs(exact));
sum_abs += std::abs(exact);
sum_abs_diff += std::abs(std::abs(value) - std::abs(exact));
if (abs_df > max_abs_df)
max_abs_df = abs_df;
++count;
}
void add_complex(std::complex<double> value, std::complex<double> exact) {
add(value, exact);
double d = gemmi::angle_abs_diff(gemmi::deg(std::arg(value)),
gemmi::deg(std::arg(exact)));
phi_diff_weighted_sum += std::abs(exact) * d;
}
double rmse() const { return std::sqrt(sum_sq_diff / count); }
double abs_avg() const { return sum_abs / count; }
double weighted_rmse() const { return rmse() / abs_avg(); }
double rfactor() const { return sum_abs_diff / sum_abs; }
double scale() const { return std::sqrt(sum_sq1 / sum_sq2); }
double mean_dphi() const { return phi_diff_weighted_sum / sum_abs; }
};
void print_to_stderr(const Comparator& c) {
fflush(stdout);
fprintf(stderr, "RMSE=%#.5g %#.4g%% max|dF|=%#.4g R=%.3f%%",
c.rmse(), 100 * c.weighted_rmse(), c.max_abs_df, 100 * c.rfactor());
}
template<typename Real>
void write_asudata_to_mtz(const gemmi::AsuData<std::complex<Real>>& asu_data,
const RefFile& file) {
std::unique_ptr<gemmi::Mtz> output_mtz(new gemmi::Mtz(true));
output_mtz->set_cell_for_all(asu_data.unit_cell());
output_mtz->spacegroup = asu_data.spacegroup();
output_mtz->add_dataset("calculated");
output_mtz->add_column(file.f_label, 'F', -1, -1, false);
output_mtz->add_column(file.phi_label, 'P', -1, -1, false);
output_mtz->title = "Fcalc generated by gemmi";
output_mtz->nreflections = (int) asu_data.v.size();
output_mtz->data.reserve(5 * asu_data.v.size());
for (const gemmi::HklValue<std::complex<Real>>& hv : asu_data.v) {
for (int i = 0; i != 3; ++i)
output_mtz->data.push_back((float) hv.hkl[i]);
output_mtz->data.push_back((float) std::abs(hv.value));
output_mtz->data.push_back((float) gemmi::phase_in_angles(hv.value));
}
output_mtz->write_to_file(file.path);
}
template<typename Table, typename Real>
void process_with_fft(const gemmi::Structure& st,
gemmi::DensityCalculator<Table, Real>& dencalc,
bool mott_bethe,
const gemmi::AsuData<std::complex<Real>>* mask_data,
gemmi::Scaling<Real>& scaling,
bool verbose, const RefFile& file,
const gemmi::AsuData<gemmi::ValueSigma<Real>>& scale_to,
const char* map_file) {
// prepare electron density map
if (verbose) {
fprintf(stderr, "Preparing electron density on a grid...\n");
fflush(stderr);
}
Timer timer(verbose);
timer.start();
dencalc.put_model_density_on_grid(st.models[0]);
timer.print("...took");
if (map_file) {
gemmi::Ccp4<Real> ccp4;
ccp4.grid = dencalc.grid;
ccp4.update_ccp4_header(2);
ccp4.write_ccp4_map(map_file);
}
if (verbose) {
#if GEMMI_COUNT_DC
fprintf(stderr, "Density-points calculated: %zu (avg per atom: %g)\n",
dencalc.density_computations,
double(dencalc.density_computations) / dencalc.atoms_added);
#endif
fprintf(stderr, "FFT of grid %d x %d x %d\n",
dencalc.grid.nu, dencalc.grid.nv, dencalc.grid.nw);
fflush(stderr);
timer.start();
}
gemmi::FPhiGrid<Real> sf = transform_map_to_f_phi(dencalc.grid, /*half_l=*/true);
if (verbose) {
timer.print("...took");
fprintf(stderr, "Preparing results...\n");
fflush(stderr);
}
gemmi::StructureFactorCalculator<Table> calc(st.cell);
calc.addends = dencalc.addends;
gemmi::fileptr_t cache(nullptr, gemmi::needs_fclose{false});
gemmi::AsuData<std::complex<double>> compared_data;
if (file.path) {
if (file.mode == RefFile::Mode::Test) {
cache = gemmi::file_open(file.path, "r");
} else if (file.mode == RefFile::Mode::Compare) {
gemmi::Mtz mtz;
mtz.read_input(gemmi::MaybeGzipped(file.path), true);
compared_data.load_values<2>(gemmi::MtzDataProxy{mtz}, {file.f_label, file.phi_label});
}
}
auto asu_data = sf.prepare_asu_data(dencalc.d_min, dencalc.blur, false, false, mott_bethe);
if (scale_to.size() != 0) {
scaling.prepare_points(asu_data, scale_to, mask_data);
printf("Calculating scale factors using %zu points...\n", scaling.points.size());
if (scaling.b_star.all_zero()) {
scaling.fit_isotropic_b_approximately();
//fprintf(stderr, "initial k_ov=%g B_ov=%g\n",
// scaling.k_overall, scaling.get_b_overall().u11);
} else if (scaling.k_overall == 1.) {
scaling.k_overall = scaling.lsq_k_overall();
//fprintf(stderr, "initial k_ov=%g\n", scaling.k_overall);
}
//scaling.fit_b_star_approximately();
scaling.fit_parameters();
if (scaling.use_solvent)
fprintf(stderr, "Bulk solvent parameters: k_sol=%g B_sol=%g\n",
scaling.k_sol, scaling.b_sol);
gemmi::SMat33<double> b_aniso = scaling.get_b_overall();
fprintf(stderr, "k_ov=%g B11=%g B22=%g B33=%g B12=%g B13=%g B23=%g\n",
scaling.k_overall, b_aniso.u11, b_aniso.u22, b_aniso.u33,
b_aniso.u12, b_aniso.u13, b_aniso.u23);
if (verbose) {
Comparator comparator;
for (const auto& p : scaling.points)
comparator.add(scaling.compute_value(p), (double)p.fobs);
fprintf(stderr, "After scaling: ");
print_to_stderr(comparator);
fprintf(stderr, "\n");
}
}
scaling.scale_data(asu_data, mask_data);
if (file.mode == RefFile::Mode::WriteMtz) {
write_asudata_to_mtz(asu_data, file);
} else if (file.mode == RefFile::Mode::None) {
for (gemmi::HklValue<std::complex<Real>>& hv : asu_data.v)
print_sf(hv.value, hv.hkl);
} else {
Comparator comparator;
for (gemmi::HklValue<std::complex<Real>>& hv : asu_data.v) {
std::complex<double> exact;
if (file.path) {
if (file.mode == RefFile::Mode::Test) {
char cache_line[100];
if (fgets(cache_line, 99, cache.get()) == nullptr)
gemmi::fail("cannot read line from file");
gemmi::Miller cache_hkl;
double f_abs, f_deg;
sscanf(cache_line, " (%d %d %d) %*f %lf %*f %lf",
&cache_hkl[0], &cache_hkl[1], &cache_hkl[2], &f_abs, &f_deg);
if (cache_hkl != hv.hkl)
gemmi::fail("Different h k l order than in cache file.");
exact = std::polar(f_abs, gemmi::rad(f_deg));
} else if (file.mode == RefFile::Mode::Compare) {
auto it = std::lower_bound(compared_data.v.begin(), compared_data.v.end(), hv.hkl);
if (it == compared_data.v.end() || it->hkl != hv.hkl)
continue;
exact = it->value;
}
} else {
exact = calc.calculate_sf_from_model(st.models[0], hv.hkl);
if (mott_bethe)
exact *= calc.mott_bethe_factor();
}
comparator.add_complex(hv.value, exact);
printf(" (%d %d %d)\t%7.2f\t%8.3f \t%6.2f\t%7.3f\td=%5.2f\n",
hv.hkl[0], hv.hkl[1], hv.hkl[2], std::abs(hv.value), std::abs(exact),
gemmi::phase_in_angles(hv.value, 5e-4), gemmi::phase_in_angles(exact, 5e-4),
sf.unit_cell.calculate_d(hv.hkl));
}
print_to_stderr(comparator);
fprintf(stderr, " <dPhi>=%#.4g", comparator.mean_dphi());
if (!verbose)
fprintf(stderr, " %#.5gs", timer.count());
fprintf(stderr, "\n");
}
}
template<typename Table>
void print_structure_factors_sm(const gemmi::SmallStructure& small,
gemmi::StructureFactorCalculator<Table>& calc,
bool mott_bethe, double d_min, bool verbose,
const RefFile& file) {
Timer timer(verbose);
timer.start();
int counter = 0;
// cf. prepare_asu_data()
double max_1_d = 1. / d_min;
int max_h = int(max_1_d / small.cell.ar);
int max_k = int(max_1_d / small.cell.br);
int max_l = int(max_1_d / small.cell.cr);
const gemmi::SpaceGroup* sg = small.spacegroup;
if (!sg)
sg = &gemmi::get_spacegroup_p1();
gemmi::ReciprocalAsu asu(sg);
gemmi::AsuData<std::complex<double>> asu_data;
gemmi::GroupOps gops = sg->operations();
for (int h = -max_h; h <= max_h; ++h)
for (int k = -max_k; k <= max_k; ++k)
for (int l = 0; l <= max_l; ++l) {
gemmi::Miller hkl{{h, k, l}};
if (!asu.is_in(hkl) || (hkl[0] == 0 && hkl[1] == 0 && hkl[2] == 0))
continue;
if (gops.is_systematically_absent(hkl))
continue;
double hkl_1_d2 = small.cell.calculate_1_d2(hkl);
if (hkl_1_d2 < max_1_d * max_1_d) {
auto value = calc.calculate_sf_from_small_structure(small, hkl);
if (mott_bethe)
value *= calc.mott_bethe_factor();
if (file.mode == RefFile::Mode::WriteMtz)
asu_data.v.push_back({hkl, value});
else
print_sf(value, hkl);
++counter;
}
}
if (verbose) {
fflush(stdout);
fprintf(stderr, "Calculated %d SFs in %g s.\n", counter, timer.count());
fflush(stderr);
}
if (file.mode == RefFile::Mode::WriteMtz) {
asu_data.unit_cell_ = small.cell;
asu_data.spacegroup_ = sg;
write_asudata_to_mtz(asu_data, file);
}
}
template<typename Table>
void compare_with_hkl(const gemmi::SmallStructure& small,
gemmi::StructureFactorCalculator<Table>& calc,
const RefFile& file,
bool verbose,
Comparator& comparator,
bool mott_bethe) {
namespace cif = gemmi::cif;
cif::Document hkl_doc = gemmi::read_cif_gz(file.path);
cif::Block& block = hkl_doc.blocks.at(0);
std::vector<std::string> tags =
{"index_h", "index_k", "index_l", "?F_calc", "?F_squared_calc"};
if (!file.f_label.empty()) {
tags.pop_back();
tags.back().replace(1, std::string::npos, file.f_label);
}
cif::Table table = block.find("_refln_", tags);
if (!table.ok())
gemmi::fail("_refln_index_ category not found in ", file.path);
int col = 0;
if (table.has_column(3))
col = 3;
else if (tags.size() > 4 && table.has_column(4))
col = 4;
if (col == 0) {
std::string msg;
if (file.f_label.empty())
msg = "Neither _refln_F_calc nor _refln_F_squared_calc";
else
msg = "_refln_" + file.f_label;
gemmi::fail(msg + " not found in: ", file.path);
}
bool use_sqrt = (col == 4 ||
file.f_label == "F_squared_calc" ||
file.f_label == "F_squared_meas");
if (verbose)
fprintf(stderr, "Checking %s_refln_%s from %s\n",
use_sqrt ? "sqrt of " : "", tags[col].c_str()+1, file.path);
gemmi::Miller hkl;
int missing = 0;
int negative = 0;
for (auto row : table) {
if (!row.has2(col)) {
missing++;
continue;
}
double f_from_file = NAN;
try {
for (int i = 0; i != 3; ++i)
hkl[i] = cif::as_int(row[i]);
f_from_file = cif::as_number(row[col]);
if (use_sqrt) {
if (f_from_file >= 0) {
f_from_file = std::sqrt(f_from_file);
} else {
negative++;
f_from_file = 0;
}
}
} catch(std::exception& e) {
fprintf(stderr, "Error in _refln_[] in %s: %s\n", file.path, e.what());
continue;
}
double f = std::abs(calc.calculate_sf_from_small_structure(small, hkl));
if (mott_bethe)
f *= calc.mott_bethe_factor();
comparator.add(f_from_file, f);
if (verbose)
printf(" (%d %d %d)\t%7.2f\t%8.3f \td=%5.2f\n",
hkl[0], hkl[1], hkl[2], f_from_file, f,
small.cell.calculate_d(hkl));
}
if (missing)
fprintf(stderr, "missing value in %d rows\n", missing);
if (negative)
fprintf(stderr, "negative value in %d rows\n", negative);
}
template<typename Table>
void compare_with_mtz(const gemmi::Model& model, const gemmi::UnitCell& cell,
gemmi::StructureFactorCalculator<Table>& calc,
const RefFile& file, bool verbose, Comparator& comparator,
bool mott_bethe) {
gemmi::Mtz mtz;
mtz.read_input(gemmi::MaybeGzipped(file.path), true);
gemmi::Mtz::Column* col = mtz.column_with_label(file.f_label);
if (!col)
gemmi::fail("MTZ file has no column with label: " + file.f_label);
gemmi::MtzDataProxy data_proxy{mtz};
for (size_t i = 0; i < data_proxy.size(); i += data_proxy.stride()) {
gemmi::Miller hkl = data_proxy.get_hkl(i);
double f_from_file = data_proxy.get_num(i + col->idx);
double f = std::abs(calc.calculate_sf_from_model(model, hkl));
if (mott_bethe)
f *= calc.mott_bethe_factor();
comparator.add(f_from_file, f);
if (verbose)
printf(" (%d %d %d)\t%7.2f\t%8.3f \td=%5.2f\n",
hkl[0], hkl[1], hkl[2], f_from_file, f, cell.calculate_d(hkl));
}
}
template<typename Table>
void process_with_table(bool use_st, gemmi::Structure& st, const gemmi::SmallStructure& small,
double wavelength, bool mott_bethe, const OptParser& p) {
const gemmi::UnitCell& cell = use_st ? st.cell : small.cell;
gemmi::StructureFactorCalculator<Table> calc(cell);
auto present_elems = use_st ? st.models[0].present_elements()
: small.present_elements();
if (present_elems[(int)gemmi::El::X])
gemmi::fail("unknown element. Add --unknown=O to treat unknown atoms as oxygen.");
for (size_t i = 1; i != present_elems.size(); ++i)
if (present_elems[i] && !Table::has((gemmi::El)i))
gemmi::fail("Missing form factor for element ", element_name((gemmi::El)i));
if (p.options[CifFp]) { // assign f' given explicitly in a file
if (use_st) {
// _atom_type.scat_dispersion_real is almost never used,
// so for now we ignore it.
fprintf(stderr, "WARNING: --ciffp ignored, f' is not read (yet) from mmCIF and PDB.\n");
} else { // small molecule
if (p.options[Verbose])
fprintf(stderr, "Using f' read from cif file (%u atom types)\n",
(unsigned) small.atom_types.size());
for (const gemmi::SmallStructure::AtomType& atom_type : small.atom_types)
calc.addends.set(atom_type.element, (float)atom_type.dispersion_real);
}
} else if (wavelength > 0) {
if (p.options[Verbose])
fprintf(stderr, "Wavelength %g A. Using Cromer-Liberman approximation for f'.\n",
wavelength);
double energy = gemmi::hc() / wavelength;
for (int z = 1; z <= 92; ++z)
if (present_elems[z] && calc.addends.values[z] == 0) {
calc.addends.values[z] = (float) gemmi::cromer_liberman(z, energy, nullptr);
}
} else {
if (p.options[Verbose])
fprintf(stderr, "Unknown wavelength, f' not used.\n");
}
if (mott_bethe)
calc.addends.subtract_z();
// handle option --hkl
for (const option::Option* opt = p.options[Hkl]; opt; opt = opt->next()) {
std::vector<int> hkl_ = parse_comma_separated_ints(opt->arg);
gemmi::Miller hkl{{hkl_[0], hkl_[1], hkl_[2]}};
if (p.options[Verbose])
fprintf(stderr, "hkl=(%d %d %d) -> d=%g\n", hkl[0], hkl[1], hkl[2],
cell.calculate_d(hkl));
std::complex<double> sf;
if (use_st)
sf = calc.calculate_sf_from_model(st.models[0], hkl);
else
sf = calc.calculate_sf_from_small_structure(small, hkl);
if (mott_bethe)
sf *= calc.mott_bethe_factor();
print_sf(sf, hkl);
}
RefFile file;
if (p.options[Test]) {
file.mode = RefFile::Mode::Test;
file.path = p.options[Test].arg;
} else if (p.options[Compare]) {
file.mode = RefFile::Mode::Compare;
file.path = p.options[Compare].arg;
} else if (p.options[ToMtz]) {
file.mode = RefFile::Mode::WriteMtz;
file.path = p.options[ToMtz].arg;
}
if (p.options[FLabel])
file.f_label = p.options[FLabel].arg;
// we leave f_label empty for use in compare_with_hkl()
else if (use_st || file.mode == RefFile::Mode::WriteMtz)
file.f_label = "FC";
if (p.options[PhiLabel])
file.phi_label = p.options[PhiLabel].arg;
else
file.phi_label = "PHIC";
using Real = float;
gemmi::AsuData<gemmi::ValueSigma<Real>> scale_to;
if (p.options[ScaleTo]) {
std::string path = p.options[ScaleTo].arg;
std::string flabel = "F";
std::string siglabel = "SIGF";
size_t sep2 = path.rfind(':');
if (sep2 != std::string::npos && sep2 != 0) {
size_t sep = path.rfind(':', sep2 - 1);
if (sep == std::string::npos)
std::swap(sep, sep2);
flabel = path.substr(sep+1, sep2 - (sep+1));
if (sep2 != std::string::npos)
siglabel = path.substr(sep2+1);
path.resize(sep);
}
double sigma_cutoff = 0;
if (p.options[SigmaCutoff])
sigma_cutoff = std::atof(p.options[SigmaCutoff].arg);
gemmi::Mtz mtz;
mtz.read_input(gemmi::MaybeGzipped(path), true);
if (siglabel.empty()) {
scale_to.load_values<2>(gemmi::MtzDataProxy{mtz}, {flabel, flabel});
for (auto& hkl_value : scale_to.v)
hkl_value.value.sigma = std::sqrt(hkl_value.value.sigma);
} else if (sigma_cutoff >= 0) {
scale_to.load_values<2>(gemmi::MtzDataProxy{mtz}, {flabel, siglabel});
size_t size_before = scale_to.size();
discard_by_sigma_ratio(scale_to, sigma_cutoff);
if (p.options[Verbose])
fprintf(stderr, "Sigma cutoff (F/sigF > %g) excluded %zu out of %zu points.\n",
sigma_cutoff, size_before - scale_to.size(), size_before);
}
}
// handle option --dmin
if (p.options[Dmin]) {
double d_min = std::atof(p.options[Dmin].arg);
if (use_st) {
gemmi::DensityCalculator<Table, Real> dencalc;
dencalc.d_min = d_min;
if (p.options[Rate])
dencalc.rate = std::atof(p.options[Rate].arg);
if (p.options[RCut])
dencalc.cutoff = (float) std::atof(p.options[RCut].arg);
dencalc.addends = calc.addends;
dencalc.grid.setup_from(st);
if (p.options[Blur]) {
dencalc.blur = std::atof(p.options[Blur].arg);
} else if (dencalc.rate < 3) {
// ITfC vol B section 1.3.4.4.5 has formula
// B = log Q / (sigma * (sigma - 1) * d*_max ^2)
// where Q is quality factor, sigma is the oversampling rate.
// This value is not optimal.
// The optimal value would depend on the distribution of B-factors
// and on the atomic cutoff radius, and probably it would be too
// hard to estimate. Here we use the same formula as in Refmac.
dencalc.set_refmac_compatible_blur(st.models[0]);
if (p.options[Verbose]) {
double b_min = gemmi::calculate_b_aniso_range(st.models[0]).first;
fprintf(stderr, "B_min=%g, B_add=%g\n", b_min, dencalc.blur);
}
}
gemmi::AtomicRadiiSet radii_choice = gemmi::AtomicRadiiSet::VanDerWaals;
if (p.options[RadiiSet]) {
char c = p.options[RadiiSet].arg[0];
if (c == 'v')
radii_choice = gemmi::AtomicRadiiSet::VanDerWaals;
else if (c == 'c')
radii_choice = gemmi::AtomicRadiiSet::Cctbx;
else if (c == 'r')
radii_choice = gemmi::AtomicRadiiSet::Refmac;
}
gemmi::SolventMasker masker(radii_choice);
if (p.options[Rprobe])
masker.rprobe = std::atof(p.options[Rprobe].arg);
if (p.options[Rshrink])
masker.rshrink = std::atof(p.options[Rshrink].arg);
if (p.options[MaskSpacing])
masker.requested_spacing = std::atof(p.options[MaskSpacing].arg);
gemmi::Scaling<Real> scaling(cell, st.find_spacegroup());
if (p.options[Ksolv] || p.options[Bsolv] || scale_to.size() != 0) {
scaling.use_solvent = true;
if (p.options[Ksolv])
scaling.k_sol = std::atof(p.options[Ksolv].arg);
if (p.options[Bsolv])
scaling.b_sol = std::atof(p.options[Bsolv].arg);
}
if (p.options[Kov])
scaling.k_overall = std::atof(p.options[Kov].arg);
if (p.options[Baniso]) {
char* endptr = nullptr;
gemmi::SMat33<double> b_aniso;
b_aniso.u11 = std::strtod(p.options[Baniso].arg, &endptr);
b_aniso.u22 = std::strtod(endptr + 1, &endptr);
b_aniso.u33 = std::strtod(endptr + 1, &endptr);
b_aniso.u12 = std::strtod(endptr + 1, &endptr);
b_aniso.u13 = std::strtod(endptr + 1, &endptr);
b_aniso.u23 = std::strtod(endptr + 1, &endptr);
scaling.set_b_overall(b_aniso);
}
const char* map_file = p.options[WriteMap] ? p.options[WriteMap].arg : nullptr;
// mask's coefficients
gemmi::AsuData<std::complex<Real>> mask_data;
auto mask_data_ptr = &mask_data;
if (scaling.use_solvent) {
gemmi::Grid<Real> gr;
if (p.options[MaskFile]) {
gemmi::Ccp4<Real> ccp4;
ccp4.read_ccp4(gemmi::MaybeGzipped(p.options[MaskFile].arg));
ccp4.setup(0, gemmi::MapSetup::Full);
gr = std::move(ccp4.grid);
} else {
gr.unit_cell = dencalc.grid.unit_cell;
gr.spacegroup = dencalc.grid.spacegroup;
double spacing = masker.requested_spacing;
if (spacing <= 0)
spacing = dencalc.requested_grid_spacing();
gr.set_size_from_spacing(spacing, gemmi::GridSizeRounding::Up);
masker.put_mask_on_grid(gr, st.models[0]);
}
if (p.options[Verbose])
fprintf(stderr, "Solvent mask: %.1f%% of %d x %d x %d grid.\n",
100. * gr.sum() / gr.point_count(), gr.nu, gr.nv, gr.nw);
mask_data = transform_map_to_f_phi(gr, /*half_l=*/true)
.prepare_asu_data(dencalc.d_min, 0);
} else {
mask_data_ptr = nullptr;
}
process_with_fft(st, dencalc, mott_bethe, mask_data_ptr, scaling,
p.options[Verbose], file, scale_to, map_file);
} else {
if (p.options[Rate] || p.options[RCut] || p.options[Blur] ||
p.options[Test])
gemmi::fail("Small molecule SFs are calculated directly. Do not use any\n"
"of the FFT-related options: --rate, --blur, --rcut, --test.");
print_structure_factors_sm(small, calc, mott_bethe, d_min, p.options[Verbose], file);
}
// handle option --compare
} else if (file.mode == RefFile::Mode::Compare) {
Comparator comparator;
if (use_st)
compare_with_mtz(st.models[0], st.cell, calc, file, p.options[Verbose],
comparator, mott_bethe);
else
compare_with_hkl(small, calc, file, p.options[Verbose], comparator, mott_bethe);
print_to_stderr(comparator);
fprintf(stderr, " sum(F^2)_ratio=%g\n", comparator.scale());
}
}
void process(const std::string& input, const OptParser& p) {
// read (Small)Structure
gemmi::Structure st = gemmi::read_structure_gz(input);
gemmi::SmallStructure small;
bool use_st = !st.models.empty();
if (!use_st) {
if (gemmi::giends_with(input, ".cif"))
small = gemmi::make_small_structure_from_block(
gemmi::read_cif_gz(input).sole_block());
if (small.sites.empty() ||
// COD can have a row of nulls as a placeholder (e.g. 2211708)
(small.sites.size() == 1 && small.sites[0].element == gemmi::El::X))
gemmi::fail("no atoms in the file");
// SM CIF files specify full occupancy for atoms on special positions.
// We need to adjust it for symmetry calculations.
small.change_occupancies_to_crystallographic();
}
if (!p.options[Dmin]) {
for (OptionIndex opt : {ToMtz, WriteMap, ScaleTo, Ksolv, Bsolv,
RadiiSet, Rprobe, Rshrink})
if (p.options[opt])
gemmi::fail("Option ", p.options[opt].name, " works only with --dmin");
}
if (!use_st) {
for (OptionIndex opt : {WriteMap, ScaleTo, Ksolv, Bsolv, RadiiSet, Rprobe, Rshrink})
if (p.options[opt])
gemmi::fail("Option ", p.options[opt].name, " is only used in density-FFT "
"route which is only used for macromolecular structures");
}
if (p.options[NoAniso]) {
if (use_st) {
for (gemmi::CRA cra : st.models[0].all())
cra.atom->aniso.u11 = cra.atom->aniso.u22 = cra.atom->aniso.u33 = 0;
} else {
for (gemmi::SmallStructure::Site& site : small.sites)
site.aniso.u11 = site.aniso.u22 = site.aniso.u33 = 0;
}
}
double wavelength = 0;
if (p.options[Wavelength]) {
wavelength = std::atof(p.options[Wavelength].arg);
} else {
if (use_st) {
// reading wavelength from PDB and mmCIF files needs to be revisited
//if (!st.crystals.empty() && !st.crystals[0].diffractions.empty())
// wavelength_list = st.crystals[0].diffractions[0].wavelengths;
} else {
wavelength = small.wavelength;
}
}
if (wavelength < 0)
gemmi::fail("wavelength should not be negative");
if (p.options[Unknown]) {
gemmi::El new_el = gemmi::find_element(p.options[Unknown].arg);
if (new_el == gemmi::El::X)
gemmi::fail("--unknown must specify chemical element symbol.");
if (use_st) {
for (gemmi::Chain& chain : st.models[0].chains)
for (gemmi::Residue& residue : chain.residues)
for (gemmi::Atom& atom : residue.atoms)
if (atom.element == gemmi::El::X)
atom.element = new_el;
} else {
for (gemmi::SmallStructure::Site& atom : small.sites)
if (atom.element == gemmi::El::X)
atom.element = new_el;
}
}
if (use_st && st.ncs_not_expanded())
gemmi::expand_ncs(st, gemmi::HowToNameCopiedChain::Dup);
if (use_st && !st.cell.is_crystal()) {
double margin = 10.;
if (p.options[Margin])
margin = std::atof(p.options[Margin].arg);
gemmi::Box<gemmi::Position> box;
expand_box(st.models[0], box);
gemmi::Position size = box.get_size();
st.cell.set(size.x + margin, size.y + margin, size.z + margin, 90, 90, 90);
if (p.options[Verbose]) {
fprintf(stderr, "Unit cell set to %g x %g x %g\n", st.cell.a, st.cell.b, st.cell.c);
fflush(stderr);
}
}
char table = p.options[For] ? p.options[For].arg[0] : 'x';
if (p.options[CifFp] && table != 'x')
gemmi::fail("Electron scattering has no dispersive part (--ciffp)");
if (table == 'x' || table == 'm') {
gemmi::IT92<float>::ignore_charge = (table == 'm' || !p.options[UseCharge]);
if (p.options[NormalizeIt92])
gemmi::IT92<float>::normalize();
process_with_table<gemmi::IT92<float>>(use_st, st, small, wavelength,
table == 'm', p);
} else if (table == 'e') {
process_with_table<gemmi::C4322<float>>(use_st, st, small, 0., false, p);
} else if (table == 'n') {
process_with_table<gemmi::Neutron92<double>>(use_st, st, small, 0., false, p);
}
}
} // anonymous namespace
int GEMMI_MAIN(int argc, char **argv) {
OptParser p(EXE_NAME);
p.simple_parse(argc, argv, Usage);
p.check_exclusive_group({ToMtz, Test, Compare});
if (p.options[MaskFile]) {
for (int opt2 : {MaskSpacing, RadiiSet, Rprobe, Rshrink})
if (p.options[opt2])
std::fprintf(stderr, "WARNING: -%s is ignored when --solvent-mask is given.\n",
p.given_name(opt2));
}
p.require_input_files_as_args();
try {
for (int i = 0; i < p.nonOptionsCount(); ++i) {
std::string input = p.coordinate_input_file(i);
if (p.options[Verbose]) {
fprintf(stderr, "Reading file %s ...\n", input.c_str());
fflush(stderr);
}
process(input, p);
}
} catch (std::exception& e) {
std::fprintf(stderr, "ERROR: %s\n", e.what());
return 1;
}
return 0;
}