-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEpiDeepWrapper.py
333 lines (284 loc) · 15.2 KB
/
EpiDeepWrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# -*- coding: utf-8 -*-
"""
Created on Sun Jul 29 15:53:14 2018
@author: Bijaya
"""
import torch
from torch.autograd import Variable
from clustering_datasets import load_mydata
from clustering_datasets import load_RNNdata
import numpy as np
from deepClusteringwCL import DeepClustering
from deepClusteringwCLTime import DeepClusteringTime
def epideep(args):
#read the input parameters
start_week = args.start_week #To make better predictions, the start week should be > 20
end_week = args.end_week #For future incidence predictions, the end_week should be < 52-N
start_year = args.start_year
end_year = args.end_year
pred_metrics= args.pred_metrics #four eval_metrics: future-inci, peak, peak-time, onset time
eval_metrics= args.eval_metrics #three evaluation metrics: RMSE, MAPE, log score.
region = args.region #input regions
if region == 'National':
region = 'X'
iterations = args.iterations
list_of_lens = [i for i in range(start_week,end_week)]
list_of_rmse = []
list_of_mape = []
new_data = []
new_prediction = []
new_count = -1
peak_prediction=[]
peak_prediction_logscore=[]
peak_time_prediction=[]
onset_time_prediction=[]
if pred_metrics == "Future":
method = 0
elif pred_metrics == "Peak":
method = 1
elif pred_metrics == "Peak_Time":
method = 2
elif pred_metrics == "Onset":
method = 3
else:
print("Unavailable prediction metrics! Please use Future, Peak, Peak_Time, or Onset!")
quit()
for length in list_of_lens:
prediction_num = 52 - length
first_year = start_year
current_year = end_year-1 #the prediction is actually on year not year-1
training_data_num = current_year - first_year+1 #diff1
#########################################################################
# Get clustering data
#########################################################################
full_length_data = load_mydata(52, first_year, region)
train_full_length_data = full_length_data[:training_data_num]
#########################################################################
# Get clustering data
#########################################################################
query_length_data = load_mydata(length, first_year, region)
train_query_length_data = query_length_data[:training_data_num]
test_query_length_data= query_length_data[training_data_num:training_data_num+1]
rnn_data, rnn_label_wILI, rnn_label_peak, rnn_label_peak_time, rnn_label_onset_time = load_RNNdata(length, first_year,region)
if method == 0:
rnn_label = rnn_label_wILI
if method == 1:
rnn_label = rnn_label_peak
if method == 2:
rnn_label = rnn_label_peak_time
if method == 3:
rnn_label = rnn_label_onset_time
train_rnn_data = rnn_data[:training_data_num]
train_rnn_label = rnn_label[:training_data_num]
test_rnn_data = rnn_data[training_data_num:training_data_num+1]
#########################################################################
# CLuster
#########################################################################
#diff2, updated
if method <= 1:
clustering = DeepClustering(query_length_data.shape[1], 20, full_length_data.shape[1], 20, 4)
clustering.fit(train_query_length_data, train_full_length_data, train_rnn_data, train_rnn_label, num_epoch = iterations)
if method>= 2:
clustering = DeepClusteringTime(query_length_data.shape[1], 20, full_length_data.shape[1], 20, 4, output_size = rnn_label.shape[1] )
clustering.fit(train_query_length_data, train_full_length_data, train_rnn_data, train_rnn_label, num_epoch = iterations)
#########################################################################
# Predict and calculate RMSE
#########################################################################
if method == 0:
epoch=0
sumval=0 #for RMSE
sumval2=0 #for MAPE
nextN=4
while epoch <= nextN-1:# 0 -- nextN-1 is nextN predictions
if epoch == 0:
new_data.append([])
new_prediction.append([])
new_count+=1
pred = clustering.predict(test_query_length_data, test_rnn_data)
rest_query = test_query_length_data[0][1:length]
#get new
#query_length_data = load_mydata(length+epoch, first_year, region)
new_query_point = (query_length_data[training_data_num:training_data_num+1])[0][-1]
#add new
new_query = torch.cat((torch.tensor(rest_query), torch.DoubleTensor([new_query_point]) ),0)
test_query_length_data[0] = new_query
#remove first element in test_rnn_data and add next value from the pred
rest_rnn_query = test_rnn_data[0][1:length]
#get new
new_rnn_query_point = pred
#add new
new_rnn_query = torch.cat((torch.tensor(rest_rnn_query), torch.DoubleTensor([[new_rnn_query_point]]) ),0)
test_rnn_data[0] = new_rnn_query
sumval += (float(new_rnn_query_point)-float(new_query_point))**2
sumval2+= abs((float(new_rnn_query_point)-float(new_query_point))/float(new_query_point))
new_data[new_count].append(float(new_query_point))
new_prediction[new_count].append(float(new_rnn_query_point))
epoch+=1
sumval = sumval/(epoch) #RMSE =sqrt(sum(val^2)/N)
sumval2 = sumval2/(epoch) #MAPE = sum((pred-data)/data)/N
list_of_rmse.append(sumval)
list_of_mape.append(sumval2)
if method == 1:
pred = clustering.predict(test_query_length_data, test_rnn_data)
peak_prediction.append(float(pred))
pred = (Variable(pred).data).cpu().numpy()
peak_prediction_logscore.append(pred[0])
if method == 2:
pred = clustering.predict(test_query_length_data, test_rnn_data)
pred = (Variable(pred).data).cpu().numpy()
peak_time_prediction.append(pred[0])
if method == 3:
pred = clustering.predict(test_query_length_data, test_rnn_data)
pred = (Variable(pred).data).cpu().numpy()
onset_time_prediction.append(pred[0])
#########################################################################
# Outputs the results
#########################################################################
if eval_metrics == 'logscore':
if method == 0:
print("Now predicting the wILI value for year ",current_year+1," and week ",length)
f = open("./results/Future_"+str(current_year+1)+".txt", "w")
Outputs=new_prediction
if method == 1:
print("Now predicting the peak value for ",current_year+1," and week ",length)
f = open("./results/Peak_"+str(current_year+1)+".txt", "w")
Outputs=peak_prediction_logscore
if method == 2:
print("Now predicting the peak time for ",current_year+1," and week ",length)
f = open("./results/Peak_Time_"+str(current_year+1)+".txt", "w")
Outputs=peak_time_prediction
if method == 3:
print("Now predicting the onset time for ",current_year+1," and week ",length)
f = open("./results/Onset_"+str(current_year+1)+".txt", "w")
Outputs=onset_time_prediction
if method <=1: #for peak and future
for i,j in zip(list_of_lens, Outputs):
#output the point predictions
f.write("Point"+","+"Value"+","+str(0.05+0.1*j.tolist().index(max(j)))+"\n" )
#output the binned predictions
countOut=0
for k in j:
beginBin =0.1*countOut
endBin =0.1*countOut+0.1
if countOut == len(list(Outputs))-1: #last bin is [13,100)
endBin = 100
f.write(str(beginBin)+","+str(endBin)+","+str(k)+"\n")
countOut+=1
if method >1: #for peak time and onset time
for i,j in zip(list_of_lens, Outputs):
#output the point predictions
f.write("PointValue"+","+str(i)+","+str(20+j.tolist().index(max(j)))+"\n" )
#output the binned predictions
countOut=0
for k in j:
if countOut+40 <=52:
beginBin =countOut+20
endBin =countOut+21
elif method == 3 and countOut == len(list(Outputs))-1:
#the last bin for onset is the no-onset bin.
beginBin = 'none'
endBin ='none'
elif countOut+40 >52: #need a mod function
beginBin =(countOut+20)%52
endBin =(countOut+21)%52
f.write(str(beginBin)+","+str(endBin)+","+str(k)+"\n")
countOut+=1
f.close()
elif eval_metrics == 'RMSE' or eval_metrics == 'MAPE':
if method == 0:
RMSE_individual = np.sqrt(list_of_rmse)
RMSE_total = np.sqrt(sum(list_of_rmse)*nextN/(nextN*len(list_of_rmse)))
MAPE_individual = list_of_mape
MAPE_total = sum(list_of_mape)*nextN/(nextN*len(list_of_mape))
if eval_metrics == "RMSE":
final_metrics_indi = RMSE_individual
final_metrics_total = RMSE_total
elif eval_metrics == "MAPE":
final_metrics_indi = MAPE_individual
final_metrics_total = MAPE_total
print("Now predicting the wILI value for year ",current_year+1," and week ",length)
print("New data = " ,new_data)
print("New prediction = ", new_prediction)
print(eval_metrics," for this week = ", final_metrics_indi)
f = open("./results/Future_"+str(current_year+1)+".txt", "w")
for i,j,k,l in zip(list_of_lens,new_data,new_prediction,final_metrics_indi):
f.write(str(i)+","+str(j[0])+","+str(j[1])+","+str(j[2])+","+str(j[3])+","+str(k[0])+","+str(k[1])+","+str(k[2])+","+str(k[3])+","+str(l)+'\n')
f.write("The total "+eval_metrics+" for these weeks is "+str(final_metrics_total)+'\n')
f.close()
if method == 1:
RMSE_total =0
MAPE_total =0
data_here = float(rnn_label_peak[training_data_num])
for i in peak_prediction:
RMSE_total+=(float(i)-data_here)**2.0
MAPE_total+=abs(float(i)-data_here)/data_here
RMSE_total=np.sqrt(RMSE_total/len(list_of_lens))
MAPE_total=MAPE_total/len(list_of_lens)
if eval_metrics == "RMSE":
final_metrics_total = RMSE_total
elif eval_metrics == "MAPE":
final_metrics_total = MAPE_total
print("Now predicting the peak value for ",current_year+1," and week ",length)
f = open("./results/Peak_"+str(current_year+1)+".txt", "w")
for i,j in zip(list_of_lens,peak_prediction):
f.write(str(i)+","+str(data_here)+","+str(j)+'\n')
f.write("The total "+eval_metrics+" for these weeks is "+str(final_metrics_total)+'\n')
f.close()
if method == 2:
RMSE_total =0
MAPE_total =0
#the data is a list with probabilities for each week, peak_time is the week with maximum of them. And 0th is for 20st week so +20.
data_here = float(20+(rnn_label_peak_time[training_data_num]).tolist().index(max(rnn_label_peak_time[training_data_num])))
for i in peak_time_prediction:
prediction_here =20+i.tolist().index(max(i))
RMSE_total+=(float(prediction_here)-data_here)**2.0
MAPE_total+=abs(float(prediction_here)-data_here)/data_here
RMSE_total=np.sqrt(RMSE_total/len(list_of_lens))
MAPE_total=MAPE_total/len(list_of_lens)
if eval_metrics == "RMSE":
final_metrics_total = RMSE_total
elif eval_metrics == "MAPE":
final_metrics_total = MAPE_total
print("Now predicting the peak time for ",current_year+1," and week ",length)
f = open("./results/Peak_Time_"+str(current_year+1)+".txt", "w")
for i,j in zip(list_of_lens,peak_time_prediction):
f.write(str(i)+","+str(data_here)+","+str(20+j.tolist().index(max(j)))+'\n')
f.write("The total "+eval_metrics+" for these weeks is "+str(final_metrics_total)+'\n')
f.close()
if method == 3:
RMSE_total =0
MAPE_total =0
data_here = float(20+(rnn_label_onset_time[training_data_num]).tolist().index(max(rnn_label_onset_time[training_data_num])))
for i in onset_time_prediction:
prediction_here =20+i.tolist().index(max(i))
RMSE_total+=(float(prediction_here)-data_here)**2.0
MAPE_total+=abs(float(prediction_here)-data_here)/data_here
RMSE_total=np.sqrt(RMSE_total/len(list_of_lens))
MAPE_total=MAPE_total/len(list_of_lens)
if eval_metrics == "RMSE":
final_metrics_total = RMSE_total
elif eval_metrics == "MAPE":
final_metrics_total = MAPE_total
print("Now predicting the onset time for ",current_year+1," and week ",length)
f = open("./results/Onset_"+str(current_year+1)+".txt", "w")
for i,j in zip(list_of_lens,onset_time_prediction):
f.write(str(i)+","+str(data_here)+","+str(20+j.tolist().index(max(j)))+'\n')
f.write("The total "+eval_metrics+" for these weeks is "+str(final_metrics_total)+'\n')
f.close()
else:
print("Unavailable evaluation metrics! Please use RMSE, MAPE, or logscore!")
quit()
#########################################################################
# Calculate the embeddings
#########################################################################
emd = clustering.embed(query_length_data, rnn_data).data.numpy()
print()
emd_file = open('results/embedding.txt', 'w')
year_label = start_year
for i in range(len(emd)):
emd_file.write(str(year_label))
for vals in emd[i]:
emd_file.write(",%.10f" % vals)
emd_file.write('\n')
year_label+=1
emd_file.close()