
Optimization for Machine Learning
CS-439

Lecture 8: Coordinate Descent

Martin Jaggi

EPFL – github.com/epfml/OptML_course

April 26, 2024

github.com/epfml/OptML_course

Coordinate Descent
Goal: Find x⋆ ∈ Rd minimizing f(x). (Example: d = 2)

x?

x1

x2

Idea: Update one coordinate at a time, while keeping others fixed.

EPFL Optimization for Machine Learning CS-439 2/20

Coordinate Descent
Goal: Find x⋆ ∈ Rd minimizing f(x).

x?

x1

x2

Idea: Update one coordinate at a time, while keeping others fixed.

EPFL Optimization for Machine Learning CS-439 3/20

Coordinate Descent
Goal: Find x⋆ ∈ Rd minimizing f(x).

x?

x1

x2

Idea: Update one coordinate at a time, while keeping others fixed.

EPFL Optimization for Machine Learning CS-439 4/20

Coordinate Descent

Modify only one coordinate per step:

select it ∈ [d]

xt+1 := xt + γeit

Two main variants:

▶ Gradient-based step-size:

xt+1 := xt − 1
L∇itf(xt) eit

▶ Exact coordinate minimization: solve the single-variable minimization
argminγ∈R f(xt + γeit) in closed form.

EPFL Optimization for Machine Learning CS-439 5/20

Randomized Coordinate Descent

select it ∈ [d] uniformly at random

xt+1 := xt − 1
L∇itf(xt) eit

▶ Faster convergence than gradient descent
(if coordinate step is significantly cheaper than full gradient step)

EPFL Optimization for Machine Learning CS-439 6/20

Convergence Analysis

Assume coordinate-wise smoothness:

f(x+ γei) ≤ f(x) + γ∇if(x) +
L

2
γ2 ∀x ∈ Rd, ∀γ ∈ R, ∀i

Is implied by coordinate-wise Lipschitz gradient:
|∇if(x+ γei)−∇if(x)| ≤ L|γ|, ∀x ∈ Rd, ∀γ ∈ R, ∀i.

▶ Additionally assume strong convexity

EPFL Optimization for Machine Learning CS-439 7/20

Convergence Analysis: Linear Rate

Theorem
Let f be coordinate-wise smooth with constant L, and strongly convex with
parameter µ > 0. Then, coordinate descent with a step-size of 1/L,

xt+1 := xt − 1
L∇itf(xt) eit .

when choosing the active coordinate it uniformly at random, has an expected linear
convergence rate of

E
[
f(xt)− f⋆

]
≤

(
1− µ

dL

)t
[f(x0)− f⋆].

EPFL Optimization for Machine Learning CS-439 8/20

Convergence Proof
Proof.
Plugging the update rule into the smoothness condition (same as in sufficient
decrease), we have

f(xt+1) ≤ f(xt)−
1

2L
|∇itf(xt)|2.

Take expectation with respect to it:

E [f(xt+1)] ≤ f(xt)−
1

2L
E
[
|∇itf(xt)|2

]
= f(xt)−

1

2L

1

d

∑
i

|∇if(xt)|2

= f(xt)−
1

2dL
∥∇f(xt)∥2.

[Lemma: f strongly convex implies PL: 1
2∥∇f(x)∥2 ≥ µ(f(x)− f⋆) ∀x]

Subtracting f⋆ from both sides, we therefore obtain

E[f(xt+1)− f⋆] ≤
(
1− µ

dL

)
[f(xt)− f⋆].

EPFL Optimization for Machine Learning CS-439 9/20

The Polyak-Lojasiewicz Condition

Definition: f satisfies the Polyak-Lojasiewicz Inequality (PL) if the following holds for
some µ > 0,

1
2∥∇f(x)∥2 ≥ µ(f(x)− f⋆), ∀ x.

Lemma (Strong Convexity ⇒ PL)

Let f be strongly convex with parameter µ > 0. Then f satisfies PL for the same µ.

Proof.
For all x and y we have

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
∥y − x∥2 .

minimizing each side of the inequality with respect to y we obtain

f(x⋆) ≥ f(x)− 1

2µ
∥∇f(x)∥2.

EPFL Optimization for Machine Learning CS-439 10/20

Linear Convergence without Strong Convexity

Examples satisfying PL:

▶ f(x) := g(Ax) for strongly convex g and arbitrary matrix A, including least
squares regression and many other applications in machine learning.

Linear convergence for all f satisfying the PL condition:

Corollary
For minimization of a function f which is coordinate-wise smooth with constant L,
satisfies the PL inequality, and has a non-empty solution set X ⋆, random coordinate
descent with a step-size of 1/L has the expected linear convergence rate of

E[f(xt)− f⋆] ≤
(
1− µ

dL

)t
[f(x0)− f⋆].

EPFL Optimization for Machine Learning CS-439 11/20

Importance Sampling

Uniformly random selection is not always best!

▶ individual smoothness constants Li for each coordinate i

f(x+ γei) ≤ f(x) + γ∇if(x) +
Li
2 γ

2

Coordinate descent using this modified selection probabilities P [it = i] = Li∑
i Li

, and

using a step-size of 1/Lit converges (Exercise 59) with the faster rate of

E[f(xt)− f⋆] ≤
(
1− µ

dL̄

)t
[f(x0)− f⋆],

where L̄ = 1
d

∑d
i=1 Li.

Often: L̄ ≪ L = maxi Li !

EPFL Optimization for Machine Learning CS-439 12/20

Steepest Coordinate Descent

▶ Coordinate selection rule

it := argmax
i∈[d]

|∇if(xt)| .

“Greedy” or steepest coordinate descent.
Deterministic vs random.

EPFL Optimization for Machine Learning CS-439 13/20

Convergence of Steepest Coordinate Descent

Has same convergence rate as for random coordinate descent!

Use

max
i

|∇if(x)|2 ≥
1

d

∑
i

|∇if(x)|2 ,

(And: algorithm is deterministic, so no need to take expectations in the proof.)

Corollary
Steepest coordinate descent with a step-size of 1/L has the linear convergence rate of

f(xt)− f⋆ ≤
(
1− µ

dL

)t
[f(x0)− f⋆].

EPFL Optimization for Machine Learning CS-439 14/20

Faster Convergence of Steepest Coordinate Descent

Faster convergence can be obtained for this algorithm when the strong convexity of f
is measured with respect to the ℓ1-norm instead of the standard Euclidean norm, i.e.

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ1

2
∥y − x∥21 .

Theorem
If f is coordinate-wise L-smooth, and strongly convex w.r.t. the ℓ1-norm with
parameter µ1 > 0, steepest coordinate descent with a step-size of 1/L has the linear
convergence rate of

f(xt)− f⋆ ≤
(
1− µ1

L

)t
[f(x0)− f⋆].

EPFL Optimization for Machine Learning CS-439 15/20

Faster Convergence of Steepest Coordinate Descent

Proof: Same as above theorem, but using the following lemma measuring the PL
inequality in the ℓ∞-norm:

Lemma
Let f be strongly convex w.r.t. the ℓ1-norm with parameter µ1 > 0. Then f satisfies

1
2 ∥∇f(x)∥2∞ ≥ µ1(f(x)− f⋆).

(Proof: omitted)

EPFL Optimization for Machine Learning CS-439 16/20

Non-smooth objectives

Have proved everything for smooth f . What about non-smooth?

Figure: A smooth function: f(x) := ∥x∥2.

figure by Alp Yurtsever & Volkan Cevher, EPFL

EPFL Optimization for Machine Learning CS-439 17/20

Non-smooth objectives
For general non-smooth f , coordinate descent fails: gets permanently stuck:

Figure: A non-smooth function: f(x) := ∥x∥2 + |x1 − x2|.

figure by Alp Yurtsever & Volkan Cevher, EPFL

EPFL Optimization for Machine Learning CS-439 18/20

Non-smooth separable objectives
What if the non-smooth part is separable over the coordinates?

f(x) := g(x) + h(x) with h(x) =
∑
i

hi(xi) ,

▶ global convergence!

Figure: A non-smooth but separable function: f(x) := ∥x∥2 + ∥x∥1.
figure by Alp Yurtsever & Volkan Cevher, EPFLEPFL Optimization for Machine Learning CS-439 19/20

Applications

▶ Random coordinate descent
▶ is state-of-the-art for generalized linear models f(x) := g(Ax) +

∑
i hi(xi).

Regression, classification (with different regularizers)

▶ Steepest coordinate descent
▶ Training with the help of GPUs

(or other hardware of limited memory):

Use steepest coordinates to decide which subset of the data A to put onto the GPU.
→ DuHL algorithm used by IBM & NVIDIA. link1, link2

EPFL Optimization for Machine Learning CS-439 20/20

https://blogs.nvidia.com/blog/2018/03/20/big-blue-touts-partnership-with-nvidia-at-ibm-think-confab/
https://www.zurich.ibm.com/snapml/

