forked from AntixK/PyTorch-VAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmiwae.py
192 lines (157 loc) · 6.81 KB
/
miwae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
from models import BaseVAE
from torch import nn
from torch.nn import functional as F
from .types_ import *
from torch.distributions import Normal
class MIWAE(BaseVAE):
def __init__(self,
in_channels: int,
latent_dim: int,
hidden_dims: List = None,
num_samples: int = 5,
num_estimates: int = 5,
**kwargs) -> None:
super(MIWAE, self).__init__()
self.latent_dim = latent_dim
self.num_samples = num_samples # K
self.num_estimates = num_estimates # M
modules = []
if hidden_dims is None:
hidden_dims = [32, 64, 128, 256, 512]
# Build Encoder
for h_dim in hidden_dims:
modules.append(
nn.Sequential(
nn.Conv2d(in_channels, out_channels=h_dim,
kernel_size= 3, stride= 2, padding = 1),
nn.BatchNorm2d(h_dim),
nn.LeakyReLU())
)
in_channels = h_dim
self.encoder = nn.Sequential(*modules)
self.fc_mu = nn.Linear(hidden_dims[-1]*4, latent_dim)
self.fc_var = nn.Linear(hidden_dims[-1]*4, latent_dim)
# Build Decoder
modules = []
self.decoder_input = nn.Linear(latent_dim, hidden_dims[-1] * 4)
hidden_dims.reverse()
for i in range(len(hidden_dims) - 1):
modules.append(
nn.Sequential(
nn.ConvTranspose2d(hidden_dims[i],
hidden_dims[i + 1],
kernel_size=3,
stride = 2,
padding=1,
output_padding=1),
nn.BatchNorm2d(hidden_dims[i + 1]),
nn.LeakyReLU())
)
self.decoder = nn.Sequential(*modules)
self.final_layer = nn.Sequential(
nn.ConvTranspose2d(hidden_dims[-1],
hidden_dims[-1],
kernel_size=3,
stride=2,
padding=1,
output_padding=1),
nn.BatchNorm2d(hidden_dims[-1]),
nn.LeakyReLU(),
nn.Conv2d(hidden_dims[-1], out_channels= 3,
kernel_size= 3, padding= 1),
nn.Tanh())
def encode(self, input: Tensor) -> List[Tensor]:
"""
Encodes the input by passing through the encoder network
and returns the latent codes.
:param input: (Tensor) Input tensor to encoder [N x C x H x W]
:return: (Tensor) List of latent codes
"""
result = self.encoder(input)
result = torch.flatten(result, start_dim=1)
# Split the result into mu and var components
# of the latent Gaussian distribution
mu = self.fc_mu(result)
log_var = self.fc_var(result)
return [mu, log_var]
def decode(self, z: Tensor) -> Tensor:
"""
Maps the given latent codes of S samples
onto the image space.
:param z: (Tensor) [B x S x D]
:return: (Tensor) [B x S x C x H x W]
"""
B, M,S, D = z.size()
z = z.contiguous().view(-1, self.latent_dim) #[BMS x D]
result = self.decoder_input(z)
result = result.view(-1, 512, 2, 2)
result = self.decoder(result)
result = self.final_layer(result) #[BMS x C x H x W ]
result = result.view([B, M, S,result.size(-3), result.size(-2), result.size(-1)]) #[B x M x S x C x H x W]
return result
def reparameterize(self, mu: Tensor, logvar: Tensor) -> Tensor:
"""
:param mu: (Tensor) Mean of the latent Gaussian
:param logvar: (Tensor) Standard deviation of the latent Gaussian
:return:
"""
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps * std + mu
def forward(self, input: Tensor, **kwargs) -> List[Tensor]:
mu, log_var = self.encode(input)
mu = mu.repeat(self.num_estimates, self.num_samples, 1, 1).permute(2, 0, 1, 3) # [B x M x S x D]
log_var = log_var.repeat(self.num_estimates, self.num_samples, 1, 1).permute(2, 0, 1, 3) # [B x M x S x D]
z = self.reparameterize(mu, log_var) # [B x M x S x D]
eps = (z - mu) / log_var # Prior samples
return [self.decode(z), input, mu, log_var, z, eps]
def loss_function(self,
*args,
**kwargs) -> dict:
"""
KL(N(\mu, \sigma), N(0, 1)) = \log \frac{1}{\sigma} + \frac{\sigma^2 + \mu^2}{2} - \frac{1}{2}
:param args:
:param kwargs:
:return:
"""
recons = args[0]
input = args[1]
mu = args[2]
log_var = args[3]
z = args[4]
eps = args[5]
input = input.repeat(self.num_estimates,
self.num_samples, 1, 1, 1, 1).permute(2, 0, 1, 3, 4, 5) #[B x M x S x C x H x W]
kld_weight = kwargs['M_N'] # Account for the minibatch samples from the dataset
log_p_x_z = ((recons - input) ** 2).flatten(3).mean(-1) # Reconstruction Loss # [B x M x S]
kld_loss = -0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim=3) # [B x M x S]
# Get importance weights
log_weight = (log_p_x_z + kld_weight * kld_loss) #.detach().data
# Rescale the weights (along the sample dim) to lie in [0, 1] and sum to 1
weight = F.softmax(log_weight, dim = -1) # [B x M x S]
loss = torch.mean(torch.mean(torch.sum(weight * log_weight, dim=-1), dim = -2), dim = 0)
return {'loss': loss, 'Reconstruction_Loss':log_p_x_z.mean(), 'KLD':-kld_loss.mean()}
def sample(self,
num_samples:int,
current_device: int, **kwargs) -> Tensor:
"""
Samples from the latent space and return the corresponding
image space map.
:param num_samples: (Int) Number of samples
:param current_device: (Int) Device to run the model
:return: (Tensor)
"""
z = torch.randn(num_samples, 1, 1,
self.latent_dim)
z = z.to(current_device)
samples = self.decode(z).squeeze()
return samples
def generate(self, x: Tensor, **kwargs) -> Tensor:
"""
Given an input image x, returns the reconstructed image.
Returns only the first reconstructed sample
:param x: (Tensor) [B x C x H x W]
:return: (Tensor) [B x C x H x W]
"""
return self.forward(x)[0][:, 0, 0, :]