forked from DLR-RM/rl-baselines3-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppo.yml
582 lines (534 loc) · 12 KB
/
ppo.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
atari:
env_wrapper:
- stable_baselines3.common.atari_wrappers.AtariWrapper
frame_stack: 4
policy: 'CnnPolicy'
n_envs: 8
n_steps: 128
n_epochs: 4
batch_size: 256
n_timesteps: !!float 1e7
learning_rate: lin_2.5e-4
clip_range: lin_0.1
vf_coef: 0.5
ent_coef: 0.01
# Tuned
Pendulum-v1:
n_envs: 4
n_timesteps: !!float 1e5
policy: 'MlpPolicy'
n_steps: 1024
gae_lambda: 0.95
gamma: 0.9
n_epochs: 10
ent_coef: 0.0
learning_rate: !!float 1e-3
clip_range: 0.2
use_sde: True
sde_sample_freq: 4
# Tuned
CartPole-v1:
n_envs: 8
n_timesteps: !!float 1e5
policy: 'MlpPolicy'
n_steps: 32
batch_size: 256
gae_lambda: 0.8
gamma: 0.98
n_epochs: 20
ent_coef: 0.0
learning_rate: lin_0.001
clip_range: lin_0.2
MountainCar-v0:
normalize: true
n_envs: 16
n_timesteps: !!float 1e6
policy: 'MlpPolicy'
n_steps: 16
gae_lambda: 0.98
gamma: 0.99
n_epochs: 4
ent_coef: 0.0
# Tuned
MountainCarContinuous-v0:
normalize: true
n_envs: 1
n_timesteps: !!float 20000
policy: 'MlpPolicy'
batch_size: 256
n_steps: 8
gamma: 0.9999
learning_rate: !!float 7.77e-05
ent_coef: 0.00429
clip_range: 0.1
n_epochs: 10
gae_lambda: 0.9
max_grad_norm: 5
vf_coef: 0.19
use_sde: True
policy_kwargs: "dict(log_std_init=-3.29, ortho_init=False)"
Acrobot-v1:
normalize: true
n_envs: 16
n_timesteps: !!float 1e6
policy: 'MlpPolicy'
n_steps: 256
gae_lambda: 0.94
gamma: 0.99
n_epochs: 4
ent_coef: 0.0
BipedalWalker-v3:
normalize: true
n_envs: 32
n_timesteps: !!float 5e6
policy: 'MlpPolicy'
n_steps: 2048
batch_size: 64
gae_lambda: 0.95
gamma: 0.999
n_epochs: 10
ent_coef: 0.0
learning_rate: !!float 3e-4
clip_range: 0.18
BipedalWalkerHardcore-v3:
normalize: true
n_envs: 16
n_timesteps: !!float 10e7
policy: 'MlpPolicy'
n_steps: 2048
batch_size: 64
gae_lambda: 0.95
gamma: 0.99
n_epochs: 10
ent_coef: 0.001
learning_rate: lin_2.5e-4
clip_range: lin_0.2
LunarLander-v2:
n_envs: 16
n_timesteps: !!float 1e6
policy: 'MlpPolicy'
n_steps: 1024
batch_size: 64
gae_lambda: 0.98
gamma: 0.999
n_epochs: 4
ent_coef: 0.01
LunarLanderContinuous-v2:
n_envs: 16
n_timesteps: !!float 1e6
policy: 'MlpPolicy'
n_steps: 1024
batch_size: 64
gae_lambda: 0.98
gamma: 0.999
n_epochs: 4
ent_coef: 0.01
# Tuned
HalfCheetahBulletEnv-v0: &pybullet-defaults
normalize: true
n_envs: 16
n_timesteps: !!float 2e6
policy: 'MlpPolicy'
batch_size: 128
n_steps: 512
gamma: 0.99
gae_lambda: 0.9
n_epochs: 20
ent_coef: 0.0
sde_sample_freq: 4
max_grad_norm: 0.5
vf_coef: 0.5
learning_rate: !!float 3e-5
use_sde: True
clip_range: 0.4
policy_kwargs: "dict(log_std_init=-2,
ortho_init=False,
activation_fn=nn.ReLU,
net_arch=dict(pi=[256, 256], vf=[256, 256])
)"
# Tuned
AntBulletEnv-v0:
<<: *pybullet-defaults
learning_rate: !!float 3e-5
policy_kwargs: "dict(log_std_init=-1,
ortho_init=False,
activation_fn=nn.ReLU,
net_arch=dict(pi=[256, 256], vf=[256, 256])
)"
# Tuned
Walker2DBulletEnv-v0:
<<: *pybullet-defaults
learning_rate: !!float 3e-5
clip_range: lin_0.4
policy_kwargs: "dict(log_std_init=-2,
ortho_init=False,
activation_fn=nn.ReLU,
net_arch=dict(pi=[256, 256], vf=[256, 256])
)"
# Tuned
HopperBulletEnv-v0:
<<: *pybullet-defaults
learning_rate: !!float 3e-5
clip_range: lin_0.4
policy_kwargs: "dict(log_std_init=-2,
ortho_init=False,
activation_fn=nn.ReLU,
net_arch=dict(pi=[256, 256], vf=[256, 256])
)"
# Tuned
ReacherBulletEnv-v0:
normalize: true
n_envs: 8
n_timesteps: !!float 1e6
policy: 'MlpPolicy'
batch_size: 64
n_steps: 512
gamma: 0.99
gae_lambda: 0.9
n_epochs: 20
ent_coef: 0.0
sde_sample_freq: 4
max_grad_norm: 0.5
vf_coef: 0.5
learning_rate: !!float 3e-5
use_sde: True
clip_range: lin_0.4
policy_kwargs: "dict(log_std_init=-2.7,
ortho_init=False,
activation_fn=nn.ReLU,
net_arch=dict(pi=[256, 256], vf=[256, 256])
)"
MinitaurBulletEnv-v0:
normalize: true
n_envs: 8
n_timesteps: !!float 2e6
policy: 'MlpPolicy'
n_steps: 2048
batch_size: 64
gae_lambda: 0.95
gamma: 0.99
n_epochs: 10
ent_coef: 0.0
learning_rate: 2.5e-4
clip_range: 0.2
MinitaurBulletDuckEnv-v0:
normalize: true
n_envs: 8
n_timesteps: !!float 2e6
policy: 'MlpPolicy'
n_steps: 2048
batch_size: 64
gae_lambda: 0.95
gamma: 0.99
n_epochs: 10
ent_coef: 0.0
learning_rate: 2.5e-4
clip_range: 0.2
# To be tuned
HumanoidBulletEnv-v0:
normalize: true
n_envs: 8
n_timesteps: !!float 1e7
policy: 'MlpPolicy'
n_steps: 2048
batch_size: 64
gae_lambda: 0.95
gamma: 0.99
n_epochs: 10
ent_coef: 0.0
learning_rate: 2.5e-4
clip_range: 0.2
InvertedDoublePendulumBulletEnv-v0:
normalize: true
n_envs: 8
n_timesteps: !!float 2e6
policy: 'MlpPolicy'
n_steps: 2048
batch_size: 64
gae_lambda: 0.95
gamma: 0.99
n_epochs: 10
ent_coef: 0.0
learning_rate: 2.5e-4
clip_range: 0.2
InvertedPendulumSwingupBulletEnv-v0:
normalize: true
n_envs: 8
n_timesteps: !!float 2e6
policy: 'MlpPolicy'
n_steps: 2048
batch_size: 64
gae_lambda: 0.95
gamma: 0.99
n_epochs: 10
ent_coef: 0.0
learning_rate: 2.5e-4
clip_range: 0.2
# Following https://github.com/lcswillems/rl-starter-files
MiniGrid-Empty-Random-5x5-v0: &minigrid-defaults
env_wrapper: minigrid.wrappers.FlatObsWrapper # See GH/1320#issuecomment-1421108191
normalize: true
n_envs: 8 # number of environment copies running in parallel
n_timesteps: !!float 1e5
policy: 'MlpPolicy'
n_steps: 128 # batch size is n_steps * n_env
batch_size: 64 # Number of training minibatches per update
gae_lambda: 0.95 # Factor for trade-off of bias vs variance for Generalized Advantage Estimator
gamma: 0.99
n_epochs: 10 # Number of epoch when optimizing the surrogate
ent_coef: 0.0 # Entropy coefficient for the loss caculation
learning_rate: 2.5e-4 # The learning rate, it can be a function
clip_range: 0.2 # Clipping parameter, it can be a function
MiniGrid-FourRooms-v0:
<<: *minigrid-defaults
n_timesteps: !!float 5e6
n_steps: 512
MiniGrid-DoorKey-5x5-v0:
<<: *minigrid-defaults
n_timesteps: !!float 1e5
MiniGrid-MultiRoom-N4-S5-v0:
<<: *minigrid-defaults
n_timesteps: !!float 1e7 # Unsolved
MiniGrid-Fetch-5x5-N2-v0:
<<: *minigrid-defaults
n_timesteps: !!float 5e6
MiniGrid-GoToDoor-5x5-v0:
<<: *minigrid-defaults
n_timesteps: !!float 5e6
MiniGrid-PutNear-6x6-N2-v0:
<<: *minigrid-defaults
n_timesteps: !!float 1e7
MiniGrid-RedBlueDoors-6x6-v0:
<<: *minigrid-defaults
n_timesteps: !!float 1e6
n_steps: 512
MiniGrid-LockedRoom-v0:
<<: *minigrid-defaults
n_timesteps: !!float 1e7 # Unsolved
MiniGrid-KeyCorridorS3R1-v0:
<<: *minigrid-defaults
n_timesteps: !!float 5e5
MiniGrid-Unlock-v0:
<<: *minigrid-defaults
MiniGrid-ObstructedMaze-2Dlh-v0:
<<: *minigrid-defaults
n_timesteps: !!float 1e7 # Unsolved
CarRacing-v2:
env_wrapper:
- rl_zoo3.wrappers.FrameSkip:
skip: 2
- gymnasium.wrappers.resize_observation.ResizeObservation:
shape: 64
- gymnasium.wrappers.gray_scale_observation.GrayScaleObservation:
keep_dim: true
frame_stack: 2
normalize: "{'norm_obs': False, 'norm_reward': True}"
n_envs: 8
n_timesteps: !!float 4e6
policy: 'CnnPolicy'
batch_size: 128
n_steps: 512
gamma: 0.99
gae_lambda: 0.95
n_epochs: 10
ent_coef: 0.0
sde_sample_freq: 4
max_grad_norm: 0.5
vf_coef: 0.5
learning_rate: lin_1e-4
use_sde: True
clip_range: 0.2
policy_kwargs: "dict(log_std_init=-2,
ortho_init=False,
activation_fn=nn.GELU,
net_arch=dict(pi=[256], vf=[256]),
)"
# === Mujoco Envs ===
# HalfCheetah-v3: &mujoco-defaults
# normalize: true
# n_timesteps: !!float 1e6
# policy: 'MlpPolicy'
Ant-v3: &mujoco-defaults
normalize: true
n_timesteps: !!float 1e6
policy: 'MlpPolicy'
# Hopper-v3:
# <<: *mujoco-defaults
#
# Walker2d-v3:
# <<: *mujoco-defaults
#
# Humanoid-v3:
# <<: *mujoco-defaults
# n_timesteps: !!float 2e6
#
# tuned
Swimmer-v3:
<<: *mujoco-defaults
gamma: 0.9999
n_envs: 4
n_steps: 1024
batch_size: 256
learning_rate: !!float 6e-4
gae_lambda: 0.98
# Tuned
# 10 mujoco envs
HalfCheetah-v3:
normalize: true
n_envs: 1
policy: 'MlpPolicy'
n_timesteps: !!float 1e6
batch_size: 64
n_steps: 512
gamma: 0.98
learning_rate: 2.0633e-05
ent_coef: 0.000401762
clip_range: 0.1
n_epochs: 20
gae_lambda: 0.92
max_grad_norm: 0.8
vf_coef: 0.58096
policy_kwargs: "dict(
log_std_init=-2,
ortho_init=False,
activation_fn=nn.ReLU,
net_arch=dict(pi=[256, 256], vf=[256, 256])
)"
# Ant-v3:
# normalize: true
# n_envs: 1
# policy: 'MlpPolicy'
# n_timesteps: !!float 1e7
# batch_size: 32
# n_steps: 512
# gamma: 0.98
# learning_rate: 1.90609e-05
# ent_coef: 4.9646e-07
# clip_range: 0.1
# n_epochs: 10
# gae_lambda: 0.8
# max_grad_norm: 0.6
# vf_coef: 0.677239
Hopper-v3:
normalize: true
n_envs: 1
policy: 'MlpPolicy'
n_timesteps: !!float 1e6
batch_size: 32
n_steps: 512
gamma: 0.999
learning_rate: 9.80828e-05
ent_coef: 0.00229519
clip_range: 0.2
n_epochs: 5
gae_lambda: 0.99
max_grad_norm: 0.7
vf_coef: 0.835671
policy_kwargs: "dict(
log_std_init=-2,
ortho_init=False,
activation_fn=nn.ReLU,
net_arch=dict(pi=[256, 256], vf=[256, 256])
)"
HumanoidStandup-v2:
normalize: true
n_envs: 1
policy: 'MlpPolicy'
n_timesteps: !!float 1e7
batch_size: 32
n_steps: 512
gamma: 0.99
learning_rate: 2.55673e-05
ent_coef: 3.62109e-06
clip_range: 0.3
n_epochs: 20
gae_lambda: 0.9
max_grad_norm: 0.7
vf_coef: 0.430793
policy_kwargs: "dict(
log_std_init=-2,
ortho_init=False,
activation_fn=nn.ReLU,
net_arch=dict(pi=[256, 256], vf=[256, 256])
)"
Humanoid-v3:
normalize: true
n_envs: 1
policy: 'MlpPolicy'
n_timesteps: !!float 1e7
batch_size: 256
n_steps: 512
gamma: 0.95
learning_rate: 3.56987e-05
ent_coef: 0.00238306
clip_range: 0.3
n_epochs: 5
gae_lambda: 0.9
max_grad_norm: 2
vf_coef: 0.431892
policy_kwargs: "dict(
log_std_init=-2,
ortho_init=False,
activation_fn=nn.ReLU,
net_arch=dict(pi=[256, 256], vf=[256, 256])
)"
InvertedDoublePendulum-v2:
normalize: true
n_envs: 1
policy: 'MlpPolicy'
n_timesteps: !!float 1e6
batch_size: 512
n_steps: 128
gamma: 0.98
learning_rate: 0.000155454
ent_coef: 1.05057e-06
clip_range: 0.4
n_epochs: 10
gae_lambda: 0.8
max_grad_norm: 0.5
vf_coef: 0.695929
InvertedPendulum-v2:
normalize: true
n_envs: 1
policy: 'MlpPolicy'
n_timesteps: !!float 1e6
batch_size: 64
n_steps: 32
gamma: 0.999
learning_rate: 0.000222425
ent_coef: 1.37976e-07
clip_range: 0.4
n_epochs: 5
gae_lambda: 0.9
max_grad_norm: 0.3
vf_coef: 0.19816
Reacher-v2:
normalize: true
n_envs: 1
policy: 'MlpPolicy'
n_timesteps: !!float 1e6
batch_size: 32
n_steps: 512
gamma: 0.9
learning_rate: 0.000104019
ent_coef: 7.52585e-08
clip_range: 0.3
n_epochs: 5
gae_lambda: 1.0
max_grad_norm: 0.9
vf_coef: 0.950368
Walker2d-v3:
normalize: true
n_envs: 1
policy: 'MlpPolicy'
n_timesteps: !!float 1e6
batch_size: 32
n_steps: 512
gamma: 0.99
learning_rate: 5.05041e-05
ent_coef: 0.000585045
clip_range: 0.1
n_epochs: 20
gae_lambda: 0.95
max_grad_norm: 1
vf_coef: 0.871923