forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrdft-rank1-bigvec.c
205 lines (172 loc) · 6.17 KB
/
rdft-rank1-bigvec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*
* Copyright (c) 2003, 2007 Matteo Frigo
* Copyright (c) 2003, 2007 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/* Complex RDFTs of rank == 1 when the vector length vn is >= # processes.
In this case, we don't need to use a six-step type algorithm, and can
instead transpose the RDFT dimension with the vector dimension to
make the RDFT local. */
#include "mpi-rdft.h"
#include "mpi-transpose.h"
typedef struct {
solver super;
int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
rearrangement rearrange;
} S;
typedef struct {
plan_mpi_rdft super;
plan *cldt_before, *cld, *cldt_after;
int preserve_input;
rearrangement rearrange;
} P;
static void apply(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_rdft *cld, *cldt_before, *cldt_after;
/* global transpose */
cldt_before = (plan_rdft *) ego->cldt_before;
cldt_before->apply(ego->cldt_before, I, O);
if (ego->preserve_input) I = O;
/* 1d RDFT(s) */
cld = (plan_rdft *) ego->cld;
cld->apply(ego->cld, O, I);
/* global transpose */
cldt_after = (plan_rdft *) ego->cldt_after;
cldt_after->apply(ego->cldt_after, I, O);
}
static int applicable(const S *ego, const problem *p_,
const planner *plnr)
{
const problem_mpi_rdft *p = (const problem_mpi_rdft *) p_;
int n_pes;
MPI_Comm_size(p->comm, &n_pes);
return (1
&& p->sz->rnk == 1
&& !(p->flags & ~RANK1_BIGVEC_ONLY)
&& (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
&& p->I != p->O))
#if 0 /* don't need this check since no other rank-1 rdft solver */
&& (p->vn >= n_pes /* TODO: relax this, using more memory? */
|| (p->flags & RANK1_BIGVEC_ONLY))
#endif
&& XM(rearrange_applicable)(ego->rearrange,
p->sz->dims[0], p->vn, n_pes)
&& (!NO_SLOWP(plnr) /* slow if rdft-serial is applicable */
|| !XM(rdft_serial_applicable)(p))
);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cldt_before, wakefulness);
X(plan_awake)(ego->cld, wakefulness);
X(plan_awake)(ego->cldt_after, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cldt_after);
X(plan_destroy_internal)(ego->cld);
X(plan_destroy_internal)(ego->cldt_before);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
const char descrip[][16] = { "contig", "discontig", "square-after",
"square-middle", "square-before" };
p->print(p, "(mpi-rdft-rank1-bigvec/%s%s %(%p%) %(%p%) %(%p%))",
descrip[ego->rearrange], ego->preserve_input==2 ?"/p":"",
ego->cldt_before, ego->cld, ego->cldt_after);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_mpi_rdft *p;
P *pln;
plan *cld = 0, *cldt_before = 0, *cldt_after = 0;
R *I, *O;
INT yblock, yb, nx, ny, vn;
int my_pe, n_pes;
static const plan_adt padt = {
XM(rdft_solve), awake, print, destroy
};
UNUSED(ego);
if (!applicable(ego, p_, plnr))
return (plan *) 0;
p = (const problem_mpi_rdft *) p_;
MPI_Comm_rank(p->comm, &my_pe);
MPI_Comm_size(p->comm, &n_pes);
nx = p->sz->dims[0].n;
if (!(ny = XM(rearrange_ny)(ego->rearrange, p->sz->dims[0],p->vn,n_pes)))
return (plan *) 0;
vn = p->vn / ny;
A(ny * vn == p->vn);
yblock = XM(default_block)(ny, n_pes);
cldt_before = X(mkplan_d)(plnr,
XM(mkproblem_transpose)(
nx, ny, vn,
I = p->I, O = p->O,
p->sz->dims[0].b[IB], yblock,
p->comm, 0));
if (XM(any_true)(!cldt_before, p->comm)) goto nada;
if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) { I = O; }
yb = XM(block)(ny, yblock, my_pe);
cld = X(mkplan_d)(plnr,
X(mkproblem_rdft_1_d)(X(mktensor_1d)(nx, vn, vn),
X(mktensor_2d)(yb, vn*nx, vn*nx,
vn, 1, 1),
O, I, p->kind[0]));
if (XM(any_true)(!cld, p->comm)) goto nada;
cldt_after = X(mkplan_d)(plnr,
XM(mkproblem_transpose)(
ny, nx, vn,
I, O,
yblock, p->sz->dims[0].b[OB],
p->comm, 0));
if (XM(any_true)(!cldt_after, p->comm)) goto nada;
pln = MKPLAN_MPI_RDFT(P, &padt, apply);
pln->cldt_before = cldt_before;
pln->cld = cld;
pln->cldt_after = cldt_after;
pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
pln->rearrange = ego->rearrange;
X(ops_add)(&cldt_before->ops, &cld->ops, &pln->super.super.ops);
X(ops_add2)(&cldt_after->ops, &pln->super.super.ops);
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cldt_after);
X(plan_destroy_internal)(cld);
X(plan_destroy_internal)(cldt_before);
return (plan *) 0;
}
static solver *mksolver(rearrangement rearrange, int preserve_input)
{
static const solver_adt sadt = { PROBLEM_MPI_RDFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->rearrange = rearrange;
slv->preserve_input = preserve_input;
return &(slv->super);
}
void XM(rdft_rank1_bigvec_register)(planner *p)
{
rearrangement rearrange;
int preserve_input;
FORALL_REARRANGE(rearrange)
for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
REGISTER_SOLVER(p, mksolver(rearrange, preserve_input));
}