forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbluestein.c
253 lines (210 loc) · 6.1 KB
/
bluestein.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*
* Copyright (c) 2003 Matteo Frigo
* Copyright (c) 2003 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "dft.h"
typedef struct {
solver super;
} S;
typedef struct {
plan_dft super;
int n; /* problem size */
int nb; /* size of convolution */
R *w; /* lambda k . exp(2*pi*i*k^2/(2*n)) */
R *W; /* DFT(w) */
plan *cldf;
int is, os;
} P;
static void bluestein_sequence(int n, R *w)
{
int k, ksq, n2 = 2 * n;
ksq = 0;
for (k = 0; k < n; ++k) {
w[2*k] = X(cos2pi)(ksq, n2);
w[2*k+1] = X(sin2pi)(ksq, n2);
/* careful with overflow */
ksq += 2*k + 1; while (ksq > n2) ksq -= n2;
}
}
static void mktwiddle(P *p)
{
int i;
int n = p->n, nb = p->nb;
R *w, *W;
E nbf = nb;
p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES);
p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES);
bluestein_sequence(n, w);
for (i = 0; i < nb; ++i)
W[2*i] = W[2*i+1] = 0;
W[0] = w[0] / nbf;
W[1] = w[1] / nbf;
for (i = 1; i < n; ++i) {
W[2*i] = W[2*(nb-i)] = w[2*i] / nbf;
W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf;
}
{
plan_dft *cldf = (plan_dft *)p->cldf;
/* cldf must be awake */
cldf->apply(p->cldf, W, W+1, W, W+1);
}
}
static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
const P *ego = (const P *) ego_;
int i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os;
R *w = ego->w, *W = ego->W;
R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
/* multiply input by conjugate bluestein sequence */
for (i = 0; i < n; ++i) {
E xr = ri[i*is], xi = ii[i*is];
E wr = w[2*i], wi = w[2*i+1];
b[2*i] = xr * wr + xi * wi;
b[2*i+1] = xi * wr - xr * wi;
}
for (; i < nb; ++i) b[2*i] = b[2*i+1] = 0;
/* convolution: FFT */
{
plan_dft *cldf = (plan_dft *)ego->cldf;
cldf->apply(ego->cldf, b, b+1, b, b+1);
}
/* convolution: pointwise multiplication */
for (i = 0; i < nb; ++i) {
E xr = b[2*i], xi = b[2*i+1];
E wr = W[2*i], wi = W[2*i+1];
b[2*i] = xi * wr + xr * wi;
b[2*i+1] = xr * wr - xi * wi;
}
/* convolution: IFFT by FFT with real/imag input/output swapped */
{
plan_dft *cldf = (plan_dft *)ego->cldf;
cldf->apply(ego->cldf, b, b+1, b, b+1);
}
/* multiply output by conjugate bluestein sequence */
for (i = 0; i < n; ++i) {
E xi = b[2*i], xr = b[2*i+1];
E wr = w[2*i], wi = w[2*i+1];
ro[i*os] = xr * wr + xi * wi;
io[i*os] = xi * wr - xr * wi;
}
X(ifree)(b);
}
static void awake(plan *ego_, int flg)
{
P *ego = (P *) ego_;
AWAKE(ego->cldf, flg);
if (flg) {
A(!ego->w);
mktwiddle(ego);
} else {
X(ifree0)(ego->w); ego->w = 0;
X(ifree0)(ego->W); ego->W = 0;
}
}
static int applicable0(const problem *p_)
{
if (DFTP(p_)) {
const problem_dft *p = (const problem_dft *) p_;
return (1
&& p->sz->rnk == 1
&& p->vecsz->rnk == 0
/* FIXME: allow other sizes */
&& X(is_prime)(p->sz->dims[0].n)
/* FIXME: infinite recursion of bluestein with itself */
&& p->sz->dims[0].n > 16
);
}
return 0;
}
static int applicable(const solver *ego, const problem *p_,
const planner *plnr)
{
UNUSED(ego);
if (NO_SLOWP(plnr)) return 0;
if (!applicable0(p_)) return 0;
return 1;
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cldf);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *)ego_;
p->print(p, "(dft-bluestein-%d/%d%(%p%))",
ego->n, ego->nb, ego->cldf);
}
static int choose_transform_size(int minsz)
{
static const int primes[] = { 2, 3, 5, 0 };
while (!X(factors_into)(minsz, primes))
++minsz;
return minsz;
}
static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
{
const problem_dft *p = (const problem_dft *) p_;
P *pln;
int n, nb;
plan *cldf = 0;
R *buf = (R *) 0;
static const plan_adt padt = {
X(dft_solve), awake, print, destroy
};
if (!applicable(ego, p_, plnr))
return (plan *) 0;
n = p->sz->dims[0].n;
nb = choose_transform_size(2 * n - 1);
buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
cldf = X(mkplan_f_d)(plnr,
X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2),
X(mktensor_1d)(1, 0, 0),
buf, buf+1,
buf, buf+1),
NO_SLOW, 0, 0);
if (!cldf) goto nada;
X(ifree)(buf);
pln = MKPLAN_DFT(P, &padt, apply);
pln->n = n;
pln->nb = nb;
pln->w = 0;
pln->W = 0;
pln->cldf = cldf;
pln->is = p->sz->dims[0].is;
pln->os = p->sz->dims[0].os;
X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops);
pln->super.super.ops.add += 4 * n + 2 * nb;
pln->super.super.ops.mul += 8 * n + 4 * nb;
pln->super.super.ops.other += 6 * (n + nb);
return &(pln->super.super);
nada:
X(ifree0)(buf);
X(plan_destroy_internal)(cldf);
return (plan *)0;
}
static solver *mksolver(void)
{
static const solver_adt sadt = { mkplan };
S *slv = MKSOLVER(S, &sadt);
return &(slv->super);
}
void X(dft_bluestein_register)(planner *p)
{
REGISTER_SOLVER(p, mksolver());
}