forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_cutlass.py
433 lines (348 loc) · 16.7 KB
/
test_cutlass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
"""Tests for cutlass kernels
Run `pytest tests/kernels/test_cutlass.py`.
"""
from typing import Type
import pytest
import torch
from tests.kernels.utils import opcheck
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from .utils import baseline_scaled_mm, to_fp8, to_int8
MNK_FACTORS = [
(1, 256, 128),
(1, 16384, 1024),
(1, 24576, 496),
(16, 256, 496),
(16, 16384, 128),
(16, 24576, 4096),
(32, 8192, 4096),
(32, 16384, 4096),
(33, 1024, 1024),
(33, 8192, 128),
(64, 2048, 496),
(64, 16384, 1024),
(100, 8192, 496),
(128, 32768, 4096),
(256, 4096, 4096),
(512, 256, 1024),
(512, 8192, 4096),
(512, 16384, 128),
(512, 24576, 128),
]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
def rand_int8(shape: tuple, device: str = "cuda"):
return to_int8(torch.rand(shape, device=device) * 255 - 128)
def cutlass_fp8_gemm_helper(m: int,
n: int,
k: int,
per_token_act_quant: bool,
per_out_channel_weight_quant: bool,
use_bias: bool,
out_dtype: Type[torch.dtype] = torch.bfloat16,
device: str = "cuda"):
# Test for a cutlass kernel with per-token activation quantization
# and per-output channel weight quantization.
a = to_fp8(torch.randn((m, k), device=device))
b = to_fp8(torch.randn((n, k), device=device).t())
m_a_scales = m if per_token_act_quant else 1
n_b_scales = n if per_out_channel_weight_quant else 1
scale_a = (torch.randn((m_a_scales, 1), device=device,
dtype=torch.float32))
scale_b = (torch.randn((1, n_b_scales), device=device,
dtype=torch.float32))
if use_bias:
bias = torch.rand((n, ), device=device, dtype=out_dtype) * 10
else:
bias = None
out = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
baseline = baseline_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
torch.testing.assert_close(out, baseline, rtol=1e-2, atol=5e-2)
opcheck(torch.ops._C.cutlass_scaled_mm,
(out, a, b, scale_a, scale_b, bias))
def cutlass_int8_gemm_helper(m: int,
n: int,
k: int,
per_token_act_quant: bool,
per_out_channel_weight_quant: bool,
use_bias: bool,
out_dtype: Type[torch.dtype] = torch.bfloat16,
device: str = "cuda"):
# Test for a cutlass kernel with per-token activation quantization
# and per-output channel weight quantization.
a = to_int8(torch.randn((m, k), device=device) * 5)
b = to_int8(torch.randn((n, k), device=device).t() * 5)
m_a_scales = m if per_token_act_quant else 1
n_b_scales = n if per_out_channel_weight_quant else 1
scale_a = (torch.randn((m_a_scales, 1), device=device,
dtype=torch.float32))
scale_b = (torch.randn((1, n_b_scales), device=device,
dtype=torch.float32))
if use_bias:
bias = torch.rand((n, ), device=device, dtype=out_dtype) * 10
else:
bias = None
out = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
baseline = baseline_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)
opcheck(torch.ops._C.cutlass_scaled_mm,
(out, a, b, scale_a, scale_b, bias))
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.skipif(not current_platform.has_device_capability(89),
reason="FP8 is not supported on this GPU type.")
def test_cutlass_fp8_gemm(m: int, n: int, k: int, per_act_token: bool,
per_out_ch: bool, use_bias: bool):
cutlass_fp8_gemm_helper(m, n, k, per_act_token, per_out_ch, use_bias)
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("use_bias", [True, False])
def test_cutlass_int8_gemm(m: int, n: int, k: int, per_act_token: bool,
per_out_ch: bool, use_bias: bool):
cutlass_int8_gemm_helper(m, n, k, per_act_token, per_out_ch, use_bias)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("use_bias", [True, False])
def test_cutlass_int8_gemm_output_dtype(per_act_token: bool, per_out_ch: bool,
out_dtype: Type[torch.dtype],
use_bias: bool):
cutlass_int8_gemm_helper(512,
512,
512,
per_act_token,
per_out_ch,
use_bias,
out_dtype=out_dtype)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.skipif(not current_platform.has_device_capability(89),
reason="FP8 is not supported on this GPU type.")
def test_cutlass_fp8_gemm_output_dtype(per_act_token: bool, per_out_ch: bool,
out_dtype: Type[torch.dtype],
use_bias: bool):
cutlass_fp8_gemm_helper(512,
512,
512,
per_act_token,
per_out_ch,
use_bias,
out_dtype=out_dtype)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.skipif(not current_platform.has_device_capability(89),
reason="FP8 is not supported on this GPU type.")
def test_cutlass_fp8_gemm_devices(per_act_token: bool, per_out_ch: bool,
use_bias: bool, device: str):
cutlass_fp8_gemm_helper(512, 512, 512, per_act_token, per_out_ch, use_bias,
torch.bfloat16, device)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_cutlass_int8_gemm_devices(per_act_token: bool, per_out_ch: bool,
use_bias: bool, device: str):
cutlass_int8_gemm_helper(512,
512,
512,
per_act_token,
per_out_ch,
use_bias,
out_dtype=torch.bfloat16,
device=device)
# For the following two tests:
# N and K correspond to the size of the weight matrix and likely to be multiples
# of a large power of two. In any case, the kernel will have a naive fallback
# when N and K are not divisible by 16. But M is the number of tokens and the
# kernel must handle any M thrown at it.
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.skipif(not current_platform.has_device_capability(89),
reason="FP8 is not supported on this GPU type.")
def test_cutlass_fp8_gemm_m_sweep(per_act_token: bool, per_out_ch: bool,
use_bias: bool):
for nk in range(32, 128, 32):
for m in range(1, 128):
cutlass_fp8_gemm_helper(m, nk, nk, per_act_token, per_out_ch,
use_bias)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("use_bias", [True, False])
def test_cutlass_int8_gemm_m_sweep(per_act_token: bool, per_out_ch: bool,
use_bias: bool):
for nk in range(32, 128, 32):
for m in range(1, 128):
cutlass_int8_gemm_helper(m, nk, nk, per_act_token, per_out_ch,
use_bias)
@pytest.mark.parametrize("m", [32, 64, 128])
@pytest.mark.parametrize("n", [16, 32, 64])
@pytest.mark.parametrize("k", [64, 128, 256])
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
@pytest.mark.skip
def test_cutlass_int8_azp_bias_fold(m: int, n: int, k: int,
out_dtype: torch.dtype):
# Currently, the test is failing because folding azp into
# 16-bit bias loses too much precision
scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
scale_b = torch.randn((1, n), device="cuda", dtype=torch.float32) / 10
aq_i8 = rand_int8((m, k))
bq_i8 = rand_int8((n, k)).t()
aq_i32 = aq_i8.to(dtype=torch.int32)
bq_i32 = bq_i8.to(dtype=torch.int32)
aq_f32 = aq_i8.to(dtype=torch.float32)
bq_f32 = bq_i8.to(dtype=torch.float32)
b_dq = scale_b * bq_f32
azp_a = torch.rand((1, ), device="cuda", dtype=torch.float32) * 10 + 1.5
azp_aq_i8 = (azp_a / scale_a).to(dtype=torch.int8)
azp_a = azp_aq_i8.to(dtype=torch.float32) * scale_a # correct for rounding
a_dq = scale_a * (aq_i32 + azp_aq_i8).to(dtype=torch.float32)
torch.testing.assert_close(a_dq, scale_a * aq_f32 + azp_a)
baseline_dq = torch.mm(a_dq, b_dq).to(out_dtype)
J = torch.ones((1, k), device="cuda", dtype=torch.float32)
azp_bias = (azp_a * scale_b * (J @ bq_f32)).to(out_dtype)
assert azp_bias.shape == (1, n)
assert azp_bias[0, :].shape == (n, )
baseline_q = (scale_a.to(device='cpu') * scale_b.to(device='cpu') * (
(aq_i32 + azp_aq_i8).to(device='cpu') @ bq_i32.to(device='cpu'))).to(
dtype=out_dtype, device='cuda')
out = ops.cutlass_scaled_mm(aq_i8,
bq_i8,
scale_a,
scale_b,
out_dtype=out_dtype,
bias=azp_bias[0, :])
torch.testing.assert_close(out, baseline_dq, rtol=1e-2, atol=1e0)
torch.testing.assert_close(out, baseline_q, rtol=1e-2, atol=1e0)
@pytest.mark.parametrize("m", [32, 64, 128])
@pytest.mark.parametrize("n", [16, 32, 64])
@pytest.mark.parametrize("k", [64, 128, 256])
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.parametrize("azp_per_token", [True, False])
def test_cutlass_int8_azp(m: int, n: int, k: int, out_dtype: torch.dtype,
use_bias: bool, azp_per_token: bool):
m_azp = m if azp_per_token else 1
scale_a = torch.randn((m_azp, 1), device="cuda", dtype=torch.float32) / 10
scale_b = torch.randn((1, n), device="cuda", dtype=torch.float32) / 10
aq_i8 = rand_int8((m, k))
aq_i32 = aq_i8.to(dtype=torch.int32)
aq_f32 = aq_i8.to(dtype=torch.float32)
bq_i8 = rand_int8((n, k)).t()
bq_i32 = bq_i8.to(dtype=torch.int32)
bq_f32 = bq_i8.to(dtype=torch.float32)
b_dq = scale_b * bq_f32
azp_a = torch.rand(
(m_azp, 1), device="cuda", dtype=torch.float32) * 10 + 1.5
azp_aq_i8 = (azp_a / scale_a).to(dtype=torch.int8)
azp_a = azp_aq_i8.to(dtype=torch.float32) * scale_a # correct for rounding
a_dq = scale_a * (aq_i32 - azp_aq_i8).to(dtype=torch.float32)
torch.testing.assert_close(a_dq,
scale_a * aq_f32 - azp_a,
rtol=1e-4,
atol=1e-3)
if use_bias:
bias = torch.rand((1, n), device="cuda", dtype=out_dtype) * 10 + 2.5
else:
bias = torch.zeros((1, n), device="cuda", dtype=out_dtype)
baseline_dq = (torch.mm(a_dq, b_dq) + bias).to(out_dtype)
# int32 mm not supported on CUDA
a_noazp_i32_cpu = (aq_i32 - azp_aq_i8).to(device='cpu')
cq = (a_noazp_i32_cpu @ bq_i32.to(device='cpu')).to(device='cuda')
baseline_q = (scale_a * scale_b * cq + bias).to(dtype=out_dtype)
# Hadamard is just the sum of the cols
azp_adj_i32 = bq_i32.sum(dim=0, keepdim=True, dtype=torch.int32)
azp_i32 = azp_aq_i8.to(dtype=torch.int32)
func_bias = bias if use_bias else None
if azp_per_token:
out = ops.cutlass_scaled_mm_azp(aq_i8, bq_i8, scale_a, scale_b,
out_dtype, azp_adj_i32, azp_i32,
func_bias)
else:
azp_with_adj_i32 = azp_i32 * azp_adj_i32
out = ops.cutlass_scaled_mm_azp(aq_i8, bq_i8, scale_a, scale_b,
out_dtype, azp_with_adj_i32, None,
func_bias)
# bfloat16 precision is 7-bit mantissa -> 2^-8 ~ 0.4%
# float16 precision is 10-bit mantissa -> 2^-11 ~ 0.05%
rtol = 1e-2 if out_dtype == torch.bfloat16 else 1e-3
atol = 1e-3
torch.testing.assert_close(out, baseline_dq, rtol=rtol, atol=atol)
torch.testing.assert_close(out, baseline_q, rtol=rtol, atol=atol)
if azp_per_token:
opcheck(torch.ops._C.cutlass_scaled_mm_azp,
(out, aq_i8, bq_i8, scale_a, scale_b, azp_adj_i32, azp_i32,
func_bias))
else:
opcheck(torch.ops._C.cutlass_scaled_mm_azp,
(out, aq_i8, bq_i8, scale_a, scale_b, azp_with_adj_i32, None,
func_bias))
# Test working with a subset of A and B
def test_cutlass_subset():
big_m, big_n, big_k = 1024, 1024, 1024
m, n, k = 512, 512, 512
whole_a = to_int8(torch.randn((big_m, big_k), device="cuda") * 5)
whole_b = to_int8(torch.randn((big_n, big_k), device="cuda").t() * 5)
a = whole_a[0:m, 0:k]
b = whole_b[0:k, 0:n]
scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
scale_b = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
out = ops.cutlass_scaled_mm(a,
b,
scale_a,
scale_b,
out_dtype=torch.bfloat16)
baseline = baseline_scaled_mm(a,
b,
scale_a,
scale_b,
out_dtype=torch.bfloat16)
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)
# Test to make sure cuda graphs work
class CutlassLayer(torch.nn.Module):
def __init__(self, b, scale_a, scale_b, out_dtype):
super().__init__()
self.b = b
self.scale_a = scale_a
self.scale_b = scale_b
self.out_dtype = out_dtype
def forward(self, a):
return ops.cutlass_scaled_mm(a, self.b, self.scale_a, self.scale_b,
self.out_dtype)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
def test_cutlass_cuda_graph(per_act_token: bool, per_out_ch: bool):
m, n, k = 512, 512, 512
a = to_int8(torch.randn((m, k), device="cuda"))
b = to_int8(torch.randn((n, k), device="cuda").t())
m_a_scales = m if per_act_token else 1
n_b_scales = n if per_out_ch else 1
scale_a = (torch.randn(
(m_a_scales, 1), device="cuda", dtype=torch.float32) / 10)
scale_b = (torch.randn(
(1, n_b_scales), device="cuda", dtype=torch.float32) / 10)
# Construct a trivial model with a single layer that calls a CUTLASS kernel
model = CutlassLayer(b, scale_a, scale_b, torch.bfloat16)
# Run the model with a cuda graph
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
out = model(a)
out.zero_()
g.replay()
baseline = torch.mm(scale_a * a.to(dtype=torch.float32),
scale_b * b.to(dtype=torch.float32)).to(torch.bfloat16)
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)
def test_cutlass_support_opcheck():
opcheck(torch.ops._C.cutlass_scaled_mm_supports_fp8, (capability, ))