forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pos_encoding.py
244 lines (223 loc) · 8.98 KB
/
test_pos_encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from itertools import accumulate, product
from typing import Dict, List, Optional
import pytest
import torch
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.platforms import current_platform
from .allclose_default import get_default_atol, get_default_rtol
IS_NEOX_STYLE = [True, False]
DTYPES = [torch.half, torch.bfloat16, torch.float]
HEAD_SIZES = [64, 80, 112, 120, 256]
ROTARY_DIMS = [None, 32] # None means rotary dim == head size
NUM_HEADS = [17] # Arbitrary values for testing
BATCH_SIZES = [5] # Arbitrary values for testing
SEQ_LENS = [11, 8192] # Arbitrary values for testing
SEEDS = [0]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
@pytest.mark.parametrize("is_neox_style", IS_NEOX_STYLE)
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("seq_len", SEQ_LENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("rotary_dim", ROTARY_DIMS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_rotary_embedding(
is_neox_style: bool,
batch_size: int,
seq_len: int,
num_heads: int,
head_size: int,
rotary_dim: Optional[int],
dtype: torch.dtype,
seed: int,
device: str,
max_position: int = 8192,
base: int = 10000,
) -> None:
if rotary_dim is None:
rotary_dim = head_size
current_platform.seed_everything(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
rope = get_rope(head_size, rotary_dim, max_position, base, is_neox_style)
rope = rope.to(dtype=dtype)
positions = torch.randint(0, max_position, (batch_size, seq_len))
query = torch.randn(batch_size,
seq_len,
num_heads * head_size,
dtype=dtype)
key = torch.randn_like(query)
# NOTE(woosuk): The reference implementation should be executed first
# because the custom kernel is in-place.
ref_query, ref_key = rope.forward_native(positions, query, key)
out_query, out_key = rope.forward(positions, query, key)
# Compare the results.
torch.testing.assert_close(out_query,
ref_query,
atol=get_default_atol(out_query),
rtol=get_default_rtol(out_query))
torch.testing.assert_close(out_key,
ref_key,
atol=get_default_atol(out_key),
rtol=get_default_rtol(out_key))
@pytest.mark.parametrize("is_neox_style", IS_NEOX_STYLE)
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("seq_len", SEQ_LENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("rotary_dim", ROTARY_DIMS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_batched_rotary_embedding(
is_neox_style: bool,
batch_size: int,
seq_len: int,
num_heads: int,
head_size: int,
rotary_dim: Optional[int],
dtype: torch.dtype,
seed: int,
device: str,
max_position: int = 8192,
base: int = 10000,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
rope = get_rope(head_size, rotary_dim, max_position, base, is_neox_style, {
"rope_type": "linear",
"factor": (1, )
})
rope = rope.to(dtype=dtype)
positions = torch.randint(0, max_position, (batch_size, seq_len))
query = torch.randn(batch_size,
seq_len,
num_heads * head_size,
dtype=dtype)
key = torch.randn_like(query)
# NOTE(woosuk): The reference implementation should be executed first
# because the custom kernel is in-place.
ref_query, ref_key = rope.forward_native(positions, query, key)
out_query, out_key = rope.forward(positions,
query,
key,
offsets=torch.zeros(batch_size * seq_len,
dtype=torch.long,
device=device))
# Compare the results.
torch.testing.assert_close(out_query,
ref_query,
atol=get_default_atol(out_query),
rtol=get_default_rtol(out_query))
torch.testing.assert_close(out_key,
ref_key,
atol=get_default_atol(out_key),
rtol=get_default_rtol(out_key))
@pytest.mark.parametrize("is_neox_style", IS_NEOX_STYLE)
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("seq_len", SEQ_LENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("rotary_dim", ROTARY_DIMS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_batched_rotary_embedding_multi_lora(
is_neox_style: bool,
batch_size: int,
seq_len: int,
num_heads: int,
head_size: int,
rotary_dim: Optional[int],
dtype: torch.dtype,
seed: int,
device: str,
max_position: int = 8192,
base: int = 10000,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
scaling_factors: List[int] = [1, 2, 4]
rope = get_rope(head_size, rotary_dim, max_position, base, is_neox_style, {
"rope_type": "linear",
"factor": tuple(scaling_factors)
})
rope = rope.to(dtype=dtype)
positions = torch.randint(0, max_position, (batch_size, seq_len))
query = torch.randn(batch_size,
seq_len,
num_heads * head_size,
dtype=dtype)
key = torch.randn_like(query)
offset_map = torch.tensor(
list(
accumulate([0] + [
max_position * scaling_factor * 2
for scaling_factor in scaling_factors[:-1]
])))
query_types = torch.randint(0,
len(scaling_factors), (batch_size, seq_len),
device=device)
query_offsets = offset_map[query_types]
# NOTE(woosuk): The reference implementation should be executed first
# because the custom kernel is in-place.
ref_query, ref_key = rope.forward_native(positions, query, key,
query_offsets)
out_query, out_key = rope.forward(positions, query, key,
query_offsets.flatten())
# Compare the results.
torch.testing.assert_close(out_query,
ref_query,
atol=get_default_atol(out_query),
rtol=get_default_rtol(out_query))
torch.testing.assert_close(out_key,
ref_key,
atol=get_default_atol(out_key),
rtol=get_default_rtol(out_key))
@torch.inference_mode()
def test_rope_module_cache():
MAX_POSITIONS = [123, 1234]
BASES = [10000, 1000000]
ROPE_SCALINGS = (None, {
"rope_type": "linear",
"factor": (1, )
}, {
"rope_type": "dynamic",
"factor": 1
})
settings = (HEAD_SIZES, ROTARY_DIMS, MAX_POSITIONS, BASES, IS_NEOX_STYLE,
ROPE_SCALINGS, DTYPES)
rope_setting_id_map: Dict[str, int] = {}
for setting in product(*settings):
head_size, rotary_dim, max_position, base, \
is_neox_stype, rope_scaling, dtype = setting
if rotary_dim is None:
rotary_dim = head_size
rope = get_rope(head_size, rotary_dim, max_position, base,
is_neox_stype, rope_scaling, dtype)
# different settings cannot share the same rope module
assert id(rope) not in rope_setting_id_map.values()
assert all(x.dtype == dtype for x in rope.buffers())
assert all(x.dtype == dtype for x in rope.parameters())
rope_setting_id_map[str(setting)] = id(rope)
for setting in product(*settings):
head_size, rotary_dim, max_position, base, \
is_neox_stype, rope_scaling, dtype = setting
if rotary_dim is None:
rotary_dim = head_size
rope = get_rope(head_size, rotary_dim, max_position, base,
is_neox_stype, rope_scaling, dtype)
# check if cache take effect
assert id(rope) == rope_setting_id_map[str(setting)]