Skip to content

Quickly create elegant regression results tables and plots when modelling in R

License

Notifications You must be signed in to change notification settings

ewenharrison/finalfit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CRAN_Status_Badge CRAN_Status_Badge TravisCRAN_Status_Badge

finalfit

The finalfit package provides functions that help you create elegant final results tables and charts when modelling. Its design follows Hadley Wickham's tidy tool manifesto.

Installation and Documentation

You can install finalfit from CRAN or github with:

install.packages("finalfit")
# install.packages("devtools")
devtools::install_github("ewenharrison/finalfit")

It is recommended that this package is used together with dplyr which can be installed via:

install.packages("dplyr")

Vignettes

Finalfit basics

Bootstrapping for model prediction

Exporting results to Word, PDF and html with R Markdown

Main Features

1. Summarise variables/factors by a categorical variable

summary_factorlist() is a simple wrapper used to summarise any number of variables by a single categorical variable. This is usually "Table 1" of a study report.

library(finalfit)
library(dplyr)

# Load example dataset, modified version of survival::colon
data(colon_s)

# Table 1 - Patient demographics ----
explanatory = c("age", "age.factor", "sex.factor", "obstruct.factor")
dependent = "perfor.factor"
colon_s %>%
  summary_factorlist(dependent, explanatory, p=TRUE)

summary_factorlist() is also commonly used to summarise any number of variables by an outcome variable (say dead yes/no).

# Table 2 - 5 yr mortality ----
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = 'mort_5yr'
colon_s %>%
  summary_factorlist(dependent, explanatory)

2. Summarise regression model results in final table format

The second main feature is the ability to create final tables for lineary lm(), logistic glm(), hierarchical logistic lme4::glmer() and Cox proprotional hazard survival::coxph() regression models.

The finalfit() "all-in-one" function takes a single dependent variable with a vector of explanatory variable names (continuous or categorical variables) to produce a final table for publication including summary statistics, univariable and multivariable regression analyses. The first columns are those produced by summary_factorist().

glm(depdendent ~ explanatory, family="binomial")

explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = 'mort_5yr'
colon_s %>%
  finalfit(dependent, explanatory)

Where a multivariable model contains a subset of the variables specified in the full univariable set, this can be specified.

explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
explanatory_multi = c("age.factor", "obstruct.factor")
dependent = 'mort_5yr'
colon_s %>%
  finalfit(dependent, explanatory, explanatory_multi)

Random effects

lme4::glmer(dependent ~ explanatory + (1 | random_effect), family="binomial")

explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
explanatory_multi = c("age.factor", "obstruct.factor")
random_effect = "hospital"
dependent = 'mort_5yr'
colon_s %>%
  finalfit(dependent, explanatory, explanatory_multi, random_effect)

metrics=TRUE provides common model metrics.

colon_s %>%
  finalfit(dependent, explanatory, explanatory_multi,  metrics=TRUE)

Cox proportional hazards

survival::coxph(dependent ~ explanatory)

explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = "Surv(time, status)"

colon_s %>% 
	finalfit(dependent, explanatory)

Rather than going all-in-one, any number of subset models can be manually added on to a summary_factorlist() table using finalfit_merge(). This is particularly useful when models take a long-time to run or are complicated.

Note requirement for fit_id=TRUE. fit2df is a function extracting most common models to a dataframe.

explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
explanatory_multi = c("age.factor", "obstruct.factor")
random_effect = "hospital"
dependent = 'mort_5yr'

# Separate tables
colon_s %>%
  summary_factorlist(dependent, explanatory, fit_id=TRUE) -> example.summary

colon_s %>%
  glmuni(dependent, explanatory) %>%
  fit2df(estimate_suffix=" (univariable)") -> example.univariable

colon_s %>%
  glmmulti(dependent, explanatory) %>%
  fit2df(estimate_suffix=" (multivariable)") -> example.multivariable


colon_s %>%
  glmmixed(dependent, explanatory, random_effect) %>%
  fit2df(estimate_suffix=" (multilevel)") -> example.multilevel

# Pipe together
example.summary %>% 
  finalfit_merge(example.univariable) %>% 
  finalfit_merge(example.multivariable) %>% 
  finalfit_merge(example.multilevel) %>% 
  select(-c(fit_id, index)) -> example.final
example.final

Cox Proportional Hazards example with separate tables merged together.

explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
explanatory_multi = c("age.factor", "obstruct.factor")
dependent = "Surv(time, status)"

# Separate tables
colon_s %>%
	summary_factorlist(dependent, explanatory, fit_id=TRUE) -> example2.summary

colon_s %>%
	coxphuni(dependent, explanatory) %>%
	fit2df(estimate_suffix=" (univariable)") -> example2.univariable

colon_s %>%
  coxphmulti(dependent, explanatory_multi) %>%
  fit2df(estimate_suffix=" (multivariable)") -> example2.multivariable

# Pipe together
example2.summary %>% 
	finalfit_merge(example2.univariable) %>% 
	finalfit_merge(example2.multivariable) %>% 
	select(-c(fit_id, index)) -> example2.final
example2.final

3. Summarise regression model results in plot

Models can be summarized with odds ratio/hazard ratio plots using or_plot or hr_plot.

# OR plot
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = 'mort_5yr'
colon_s %>%
  or_plot(dependent, explanatory)
# Previously fitted models (`glmmulti`) can be provided directly to `glmfit`  
  
# HR plot
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = "Surv(time, status)"
colon_s %>%
  hr_plot(dependent, explanatory, dependent_label = "Survival")
# Previously fitted models (`coxphmulti`) can be provided directly using `coxfit`

Our own particular Rstan models are supported and will be documented in the future. Broadly, if you are running (hierarchical) logistic regression models in Stan with coefficients specified as a vector labelled beta, then fit2df() will work directly on the stanfit object in a similar manner to if it was a glm or glmerMod object.

Notes

Use Hmisc::label() to assign labels to variables for tables and plots.

label(colon_s$age.factor) = "Age (years)"

Export dataframe tables directly or to R Markdown using knitr::kable().

Note wrapper finalfit_missing() can be useful. Wraps mice::md.pattern.

colon_s %>%
  finalfit_missing(dependent, explanatory)

About

Quickly create elegant regression results tables and plots when modelling in R

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •