forked from kuroko1t/gotorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgotorch.cpp
378 lines (322 loc) · 11.7 KB
/
gotorch.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*
MIT License
Copyright (c) 2019 kurosawa
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <torch/torch.h>
#include <torch/script.h>
#include <gotorch.h>
struct TorchModel : public torch::nn::Module {
using torch::nn::Module::register_module;
};
LinearImpl linear(int a, int b) {
torch::nn::LinearImpl *linear= new torch::nn::LinearImpl(a, b);
return linear;
}
Tensor Randn(int* shape, int size) {
torch::Tensor *tensor = new torch::Tensor();
std::vector<int64_t> x;
for (int i=0; i < size; i++) {
x.push_back((int64_t)shape[i]);
}
*tensor = torch::randn(x);
return (void*)tensor;
}
TModel modelInit() {
TorchModel *mod= new TorchModel();
return (void*)mod;
}
void params_size(TModel model, int *size) {
TorchModel* tmodel = (TorchModel*) model;
*size = tmodel->parameters().size();
}
void params(TModel model, int size, Tensor *tensor) {
TorchModel* tmodel = (TorchModel*) model;
for (int i = 0; i < size; i++) {
torch::Tensor *datatensor = new torch::Tensor();
*datatensor = tmodel->parameters()[i];
tensor[i] = datatensor;
}
}
SGD optimizer_sgd(Tensor *tensor, float lr, int size) {
std::vector<torch::Tensor> tensors;
for (int i=0; i < size; i++) {
tensors.push_back(*(torch::Tensor*)tensor[i]);
}
torch::optim::SGD *optimizer = new torch::optim::SGD(tensors, lr);
return optimizer;
}
void optimizer_zero_grad(SGD optimizer) {
((torch::optim::SGD*)optimizer)->zero_grad();
}
void optimizer_step(SGD optimizer) {
((torch::optim::SGD*)optimizer)->step();
}
int istraining(TModel model) {
TorchModel* tmodel = (TorchModel*) model;
return tmodel->is_training();
}
LinearImpl register_module_linear(const char *name, LinearImpl linear, TModel mod) {
std::string str(name);
TorchModel *mod_test = (TorchModel*)mod;
torch::nn::LinearImpl *plinear = (torch::nn::LinearImpl*)linear;
std::shared_ptr<torch::nn::LinearImpl> p1(plinear);
return (void*)((mod_test->register_module(str, p1)).get());
}
Conv2dImpl register_module_conv2d(const char *name, Conv2dImpl conv2d, TModel mod) {
std::string str(name);
TorchModel *mod_re = (TorchModel*)mod;
torch::nn::Conv2dImpl *conv2d_re = (torch::nn::Conv2dImpl*)conv2d;
std::shared_ptr<torch::nn::Conv2dImpl> conv2d_re_sh(conv2d_re);
return ((mod_re->register_module(str, conv2d_re_sh)).get());
}
Dropout2dImpl register_module_featureDropout(const char *name,
Dropout2dImpl featuredrop, TModel mod) {
std::string str(name);
TorchModel *mod_re = (TorchModel*)mod;
torch::nn::Dropout2dImpl *featuredrop_re = (torch::nn::Dropout2dImpl*)featuredrop;
std::shared_ptr<torch::nn::Dropout2dImpl> featuredrop_re_sh(featuredrop_re);
return ((mod_re->register_module(str, featuredrop_re_sh)).get());
}
Conv2dImpl conv2d(int in_channels, int out_channels, int kernel_size) {
torch::nn::Conv2dImpl *conv2d = new torch::nn::Conv2dImpl(in_channels, out_channels, kernel_size);
return conv2d;
}
Dropout2dImpl FeatureDropout() {
torch::nn::Dropout2dImpl *conv_drop =
new torch::nn::Dropout2dImpl();
return conv_drop;
}
Tensor forward_linear(LinearImpl linear, Tensor tensor) {
torch::nn::LinearImpl* plinear = (torch::nn::LinearImpl*)linear;
torch::Tensor* ptensor = (torch::Tensor*)tensor;
torch::Tensor *atensor = new torch::Tensor();
torch::Tensor* go_atensor = (torch::Tensor*)atensor;
*go_atensor = plinear->forward(*ptensor);
return (void*)go_atensor;
}
Tensor forward_conv2d(Conv2dImpl conv2d, Tensor tensor) {
torch::nn::Conv2dImpl* conv2d_re = (torch::nn::Conv2dImpl*)conv2d;
torch::Tensor* ptensor = (torch::Tensor*)tensor;
torch::Tensor *atensor = new torch::Tensor();
torch::Tensor* go_atensor = (torch::Tensor*)atensor;
*go_atensor = conv2d_re->forward(*ptensor);
return (void*)go_atensor;
}
Tensor forward_featureDropout(Dropout2dImpl featuredrop, Tensor tensor) {
torch::nn::Dropout2dImpl* featuredrop_re = (torch::nn::Dropout2dImpl*)featuredrop;
torch::Tensor* ptensor = (torch::Tensor*)tensor;
torch::Tensor *atensor = new torch::Tensor();
torch::Tensor* go_atensor = (torch::Tensor*)atensor;
*go_atensor = featuredrop_re->forward(*ptensor);
return (void*)go_atensor;
}
//using mnistDataset = torch::data::StatelessDataLoader<
// torch::data::datasets::MapDataset<
// torch::data::datasets::MNIST,
// torch::data::transforms::Stack<torch::data::Example<>>>,
// torch::data::samplers::RandomSampler>;
//using example_data = torch::data::Example<at::Tensor, at::Tensor>;
int data_loader_size(const char *path, int batch_size) {
std::string spath(path);
auto dataset = torch::data::make_data_loader(
torch::data::datasets::MNIST(spath)
.map(torch::data::transforms::Stack<>()),
batch_size);
int size = 0;
for (auto& x : *dataset) {
size +=1;
}
return size;
}
void data_loader(const char *path, int batch_size,
Tensor *data_vec, Tensor *target_vec) {
std::string spath(path);
auto dataset = torch::data::make_data_loader(
torch::data::datasets::MNIST(spath)
.map(torch::data::transforms::Stack<>()),
batch_size);
int i = 0;
for (auto& x : *dataset) {
torch::Tensor *datatensor = new torch::Tensor();
torch::Tensor *targettensor = new torch::Tensor();
*datatensor = x.data;
data_vec[i] = datatensor;
*targettensor = x.target;
target_vec[i] = targettensor;
i+=1;
}
}
int tensor_size(Tensor tensor, int dim) {
torch::Tensor *atensor = (torch::Tensor*)tensor;
return atensor->size(dim);
}
Tensor tensor_view(Tensor tensor, int* shape, int size) {
torch::Tensor *atensor = (torch::Tensor*)tensor;
std::vector<int64_t> x;
for (int i=0; i < size; i++) {
x.push_back((int64_t)shape[i]);
}
c10::IntArrayRef x1 = c10::IntArrayRef(x);
torch::Tensor *ret_tensor = new torch::Tensor();
*ret_tensor = atensor->view(x1);
return ret_tensor;
}
Tensor tensor_reshape(Tensor tensor, int* shape, int size) {
torch::Tensor *atensor = (torch::Tensor*)tensor;
std::vector<int64_t> x;
for (int i = 0; i < size; i++) {
x.push_back((int64_t)shape[i]);
}
torch::Tensor *ret_tensor = new torch::Tensor();
c10::IntArrayRef x1 = c10::IntArrayRef(x);
*ret_tensor = atensor->reshape(x1);
return (void*)ret_tensor;
}
int tensor_is_cuda(Tensor tensor) {
torch::Tensor *atensor = (torch::Tensor*)tensor;
return atensor->is_cuda();
}
void backward(Tensor tensor) {
torch::Tensor *atensor = (torch::Tensor*)tensor;
atensor->backward();
}
Tensor log_softmax(Tensor tensor, int dim) {
torch::Tensor *atensor = (torch::Tensor*)tensor;
torch::Tensor *ret_tensor = new torch::Tensor();
*ret_tensor = torch::log_softmax(*atensor, dim);
return (void*)ret_tensor;
}
Tensor tensor_nll_loss(Tensor tensor, Tensor target) {
torch::Tensor *atensor = (torch::Tensor*)tensor;
torch::Tensor *atarget = (torch::Tensor*)target;
torch::Tensor *ret_tensor = new torch::Tensor();
*ret_tensor = torch::nll_loss(*atensor, *atarget);
return (void*)ret_tensor;
}
Tensor relu(Tensor tensor) {
torch::Tensor *atensor = (torch::Tensor*)tensor;
torch::Tensor *ret_tensor = new torch::Tensor();
*ret_tensor = torch::relu(*atensor);
return (void*)ret_tensor;
}
Tensor dropout(Tensor tensor, float droprate, int is_training) {
torch::Tensor *atensor = (torch::Tensor*)tensor;
torch::Tensor *ret_tensor = new torch::Tensor();
bool is_training_bool = false;
if (is_training != 0) {
is_training_bool = true;
}
*ret_tensor = torch::dropout(*atensor, droprate, is_training_bool);
return ret_tensor;
}
Tensor max_pool2d(Tensor tensor, int kernel_size) {
torch::Tensor *atensor = (torch::Tensor*)tensor;
torch::Tensor *ret_tensor = new torch::Tensor();
*ret_tensor = torch::max_pool2d(*atensor, kernel_size);
return (void*)ret_tensor;
}
float tensor_item(Tensor tensor) {
torch::Tensor *atensor = (torch::Tensor*)tensor;
return atensor->item<float>();
}
Tensor tensor_to_device(Tensor tensor, CPU device) {
torch::Tensor *atensor = (torch::Tensor*)tensor;
torch::Device* device_re = (torch::Device*)device;
torch::Tensor *ret_tensor = new torch::Tensor();
*ret_tensor = atensor->to(*device_re);
return ret_tensor;
}
Tensor tensor_to_cuda(Tensor tensor, CUDA device) {
return tensor_to_device(tensor, device);
}
Tensor tensor_to_cpu(Tensor tensor, CPU device) {
return tensor_to_device(tensor, device);
}
void save(TModel model, const char *path) {
std::string spath(path);
TorchModel* tmodel = (TorchModel*) model;
std::shared_ptr<torch::nn::Module> t1model =
std::make_shared<torch::nn::Module>(*tmodel);
torch::save(t1model, spath);
}
TModule load(const char *path) {
std::string spath(path);
torch::jit::script::Module *module = new torch::jit::script::Module();
*module = torch::jit::load(spath);
return (void*)module;
}
ATensor forward_module(TModule module, ATensor atensor) {
torch::jit::script::Module* tmodule = (torch::jit::script::Module*) module;
std::shared_ptr<torch::jit::script::Module> t1module =
std::make_shared<torch::jit::script::Module>(*tmodule);
at::Tensor *t1atensor = (at::Tensor*)atensor;
at::Tensor *output = new at::Tensor();
std::vector<torch::jit::IValue> inputs;
inputs.push_back(*t1atensor);
//*output = tmodule->forward({*t1atensor});
*output = tmodule->forward(inputs).toTensor();
return (void*)output;
}
int cuda_is_available() {
return torch::cuda::is_available();
}
CUDA cuda_device() {
torch::Device *device = new torch::Device(torch::kCUDA);
return device;
}
CPU cpu_device() {
torch::Device *device = new torch::Device(torch::kCPU);
return device;
}
void model_to_cuda(TModel model, CUDA device) {
TorchModel* tmodel = (TorchModel*) model;
torch::Device* device_re = (torch::Device*)device;
tmodel->to(*device_re);
}
void model_to_cpu(TModel model, CPU device) {
TorchModel* tmodel = (TorchModel*) model;
torch::Device* device_re = (torch::Device*)device;
tmodel->to(*device_re);
}
int AtensorSize(ATensor atensor) {
at::Tensor *ori_atensor = (at::Tensor*)atensor;
return ori_atensor->numel();
}
size_t AtensorDim(ATensor atensor, size_t dim) {
at::Tensor *ori_atensor = (at::Tensor*)atensor;
return ori_atensor->size(dim);
}
float* AtensorToVec(ATensor atensor) {
//std::vector<float> *vec = new std::vector<float>();
at::Tensor *ori_atensor = (at::Tensor*)atensor;
//vec = ori_tensor->data_ptr();
//return vec;
std::vector<float> *v = new std::vector<float>((*ori_atensor).data_ptr<float>(), (*ori_atensor).data_ptr<float>() + (*ori_atensor).numel());
//return (void*)v;
return v->data();
}
ATensor from_blob(float* data, int* shapes, int size) {
std::vector<int64_t> x;
for (int i=0; i < size; i++) {
x.push_back((int64_t)shapes[i]);
}
c10::IntArrayRef x1 = c10::IntArrayRef(x);
at::Tensor *tensor = new at::Tensor();
*tensor = torch::from_blob(data, x1);
return tensor;
}