This repository has been archived by the owner on Apr 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathMIME_Img_DataLoader.py
132 lines (107 loc) · 4.52 KB
/
MIME_Img_DataLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from .headers import *
import os.path as osp
import pdb
import scipy.misc
flags.DEFINE_integer('n_data_workers', 4, 'Number of data loading workers')
flags.DEFINE_integer('batch_size', 1, 'Batch size. Code currently only handles bs=1')
flags.DEFINE_string('MIME_dir', '/checkpoint/tanmayshankar/MIME/', 'Data Directory')
flags.DEFINE_string('MIME_imgs_dir', '/checkpoint/shubhtuls/data/MIME/', 'Data Directory')
flags.DEFINE_integer('img_h', 64, 'Height')
flags.DEFINE_integer('img_w', 128, 'Width')
flags.DEFINE_integer('ds_freq', 20, 'Downsample joint trajectories by this fraction. Original recroding rate = 100Hz')
def resample(original_trajectory, desired_number_timepoints):
original_traj_len = len(original_trajectory)
new_timepoints = np.linspace(0, original_traj_len-1, desired_number_timepoints, dtype=int)
return original_trajectory[new_timepoints]
class MIME_Img_Dataset(Dataset):
'''
Class implementing instance of dataset class for MIME data.
'''
def __init__(self, opts, split='all'):
self.dataset_directory = opts.MIME_dir
self.imgs_dataset_directory = opts.MIME_imgs_dir
self.img_h = opts.img_h
self.img_w = opts.img_w
# Default: /checkpoint/tanmayshankar/MIME/
self.fulltext = osp.join(self.dataset_directory, 'MIME_jointangles/*/*/joint_angles.txt')
self.filelist = glob.glob(self.fulltext)
self.ds_freq = opts.ds_freq
with open(self.filelist[0], 'r') as file:
lines = file.readlines()
self.joint_names = sorted(eval(lines[0].rstrip('\n')).keys())
if split == 'all':
self.filelist = self.filelist
else:
self.task_lists = np.load(os.path.join(
self.dataset_directory, 'MIME_jointangles/{}_Lists.npy'.format(split.capitalize())))
self.filelist = []
for i in range(20):
self.filelist.extend(self.task_lists[i])
self.filelist = [f.replace('/checkpoint/tanmayshankar/MIME/', opts.MIME_dir) for f in self.filelist]
def __len__(self):
# Return length of file list.
return len(self.filelist)
def __getitem__(self, index):
'''
# Returns Joint Angles as:
# List of length Number_Timesteps, with each element of the list a dictionary containing the sequence of joint angles.
# Assumes index is within range [0,len(filelist)-1]
'''
file = self.filelist[index]
file_split = file.split('/')
frames_folder = osp.join(self.imgs_dataset_directory, file_split[-3], file_split[-2], 'frames')
n_frames = len(os.listdir(frames_folder))
imgs = []
frame_inds = [0, n_frames//2, n_frames-1]
for fi in frame_inds:
img = scipy.misc.imread(osp.join(frames_folder, 'im_{}.png'.format(fi+1)))
imgs.append(scipy.misc.imresize(img, (self.img_h, self.img_w)))
imgs = np.stack(imgs)
left_gripper = np.loadtxt(os.path.join(os.path.split(file)[0],'left_gripper.txt'))
right_gripper = np.loadtxt(os.path.join(os.path.split(file)[0],'right_gripper.txt'))
joint_angle_trajectory = []
# Open file.
with open(file, 'r') as file:
lines = file.readlines()
for line in lines:
dict_element = eval(line.rstrip('\n'))
if len(dict_element.keys()) == len(self.joint_names):
array_element = np.array([dict_element[joint] for joint in self.joint_names])
joint_angle_trajectory.append(array_element)
joint_angle_trajectory = np.array(joint_angle_trajectory)
n_samples = len(joint_angle_trajectory) // self.ds_freq
elem = {}
elem['imgs'] = imgs
elem['joint_angle_trajectory'] = resample(joint_angle_trajectory, n_samples)
elem['left_gripper'] = resample(left_gripper, n_samples)/100
elem['right_gripper'] = resample(right_gripper, n_samples)/100
elem['is_valid'] = int(np.linalg.norm(np.diff(elem['joint_angle_trajectory'],axis=0),axis=1).max() < 1.0)
return elem
def recreate_dictionary(self, arm, joint_angles):
if arm=="left":
offset = 2
width = 7
elif arm=="right":
offset = 9
width = 7
elif arm=="full":
offset = 0
width = len(self.joint_names)
return dict((self.joint_names[i],joint_angles[i-offset]) for i in range(offset,offset+width))
# ------------ Data Loader ----------- #
# ------------------------------------ #
def data_loader(opts, split='all', shuffle=True):
dset = MIME_Img_Dataset(opts, split=split)
return DataLoader(
dset,
batch_size=opts.batch_size,
shuffle=shuffle,
num_workers=opts.n_data_workers,
drop_last=True)