This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 60
/
finetuning.py
249 lines (196 loc) · 8.33 KB
/
finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import pdb
import os
import time
import sys
import torch
from torch.utils.tensorboard import SummaryWriter
import logging
import json
import numpy as np
import torch.distributed as dist
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from src.options import Options
from src import data, beir_utils, slurm, dist_utils, utils, contriever, finetuning_data, inbatch
import train
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logger = logging.getLogger(__name__)
def finetuning(opt, model, optimizer, scheduler, tokenizer, step):
run_stats = utils.WeightedAvgStats()
tb_logger = utils.init_tb_logger(opt.output_dir)
if hasattr(model, "module"):
eval_model = model.module
else:
eval_model = model
eval_model = eval_model.get_encoder()
train_dataset = finetuning_data.Dataset(
datapaths=opt.train_data,
negative_ctxs=opt.negative_ctxs,
negative_hard_ratio=opt.negative_hard_ratio,
negative_hard_min_idx=opt.negative_hard_min_idx,
normalize=opt.eval_normalize_text,
global_rank=dist_utils.get_rank(),
world_size=dist_utils.get_world_size(),
maxload=opt.maxload,
training=True,
)
collator = finetuning_data.Collator(tokenizer, passage_maxlength=opt.chunk_length)
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset,
sampler=train_sampler,
batch_size=opt.per_gpu_batch_size,
drop_last=True,
num_workers=opt.num_workers,
collate_fn=collator,
)
train.eval_model(opt, eval_model, None, tokenizer, tb_logger, step)
evaluate(opt, eval_model, tokenizer, tb_logger, step)
epoch = 1
model.train()
prev_ids, prev_mask = None, None
while step < opt.total_steps:
logger.info(f"Start epoch {epoch}, number of batches: {len(train_dataloader)}")
for i, batch in enumerate(train_dataloader):
batch = {key: value.cuda() if isinstance(value, torch.Tensor) else value for key, value in batch.items()}
step += 1
train_loss, iter_stats = model(**batch, stats_prefix="train")
train_loss.backward()
if opt.optim == "sam" or opt.optim == "asam":
optimizer.first_step(zero_grad=True)
sam_loss, _ = model(**batch, stats_prefix="train/sam_opt")
sam_loss.backward()
optimizer.second_step(zero_grad=True)
else:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
run_stats.update(iter_stats)
if step % opt.log_freq == 0:
log = f"{step} / {opt.total_steps}"
for k, v in sorted(run_stats.average_stats.items()):
log += f" | {k}: {v:.3f}"
if tb_logger:
tb_logger.add_scalar(k, v, step)
log += f" | lr: {scheduler.get_last_lr()[0]:0.3g}"
log += f" | Memory: {torch.cuda.max_memory_allocated()//1e9} GiB"
logger.info(log)
run_stats.reset()
if step % opt.eval_freq == 0:
train.eval_model(opt, eval_model, None, tokenizer, tb_logger, step)
evaluate(opt, eval_model, tokenizer, tb_logger, step)
if step % opt.save_freq == 0 and dist_utils.get_rank() == 0:
utils.save(
eval_model,
optimizer,
scheduler,
step,
opt,
opt.output_dir,
f"step-{step}",
)
model.train()
if step >= opt.total_steps:
break
epoch += 1
def evaluate(opt, model, tokenizer, tb_logger, step):
dataset = finetuning_data.Dataset(
datapaths=opt.eval_data,
normalize=opt.eval_normalize_text,
global_rank=dist_utils.get_rank(),
world_size=dist_utils.get_world_size(),
maxload=opt.maxload,
training=False,
)
collator = finetuning_data.Collator(tokenizer, passage_maxlength=opt.chunk_length)
sampler = SequentialSampler(dataset)
dataloader = DataLoader(
dataset,
sampler=sampler,
batch_size=opt.per_gpu_batch_size,
drop_last=False,
num_workers=opt.num_workers,
collate_fn=collator,
)
model.eval()
if hasattr(model, "module"):
model = model.module
correct_samples, total_samples, total_step = 0, 0, 0
all_q, all_g, all_n = [], [], []
with torch.no_grad():
for i, batch in enumerate(dataloader):
batch = {key: value.cuda() if isinstance(value, torch.Tensor) else value for key, value in batch.items()}
all_tokens = torch.cat([batch["g_tokens"], batch["n_tokens"]], dim=0)
all_mask = torch.cat([batch["g_mask"], batch["n_mask"]], dim=0)
q_emb = model(input_ids=batch["q_tokens"], attention_mask=batch["q_mask"], normalize=opt.norm_query)
all_emb = model(input_ids=all_tokens, attention_mask=all_mask, normalize=opt.norm_doc)
g_emb, n_emb = torch.split(all_emb, [len(batch["g_tokens"]), len(batch["n_tokens"])])
all_q.append(q_emb)
all_g.append(g_emb)
all_n.append(n_emb)
all_q = torch.cat(all_q, dim=0)
all_g = torch.cat(all_g, dim=0)
all_n = torch.cat(all_n, dim=0)
labels = torch.arange(0, len(all_q), device=all_q.device, dtype=torch.long)
all_sizes = dist_utils.get_varsize(all_g)
all_g = dist_utils.varsize_gather_nograd(all_g)
all_n = dist_utils.varsize_gather_nograd(all_n)
labels = labels + sum(all_sizes[: dist_utils.get_rank()])
scores_pos = torch.einsum("id, jd->ij", all_q, all_g)
scores_neg = torch.einsum("id, jd->ij", all_q, all_n)
scores = torch.cat([scores_pos, scores_neg], dim=-1)
argmax_idx = torch.argmax(scores, dim=1)
sorted_scores, indices = torch.sort(scores, descending=True)
isrelevant = indices == labels[:, None]
rs = [r.cpu().numpy().nonzero()[0] for r in isrelevant]
mrr = np.mean([1.0 / (r[0] + 1) if r.size else 0.0 for r in rs])
acc = (argmax_idx == labels).sum() / all_q.size(0)
acc, total = dist_utils.weighted_average(acc, all_q.size(0))
mrr, _ = dist_utils.weighted_average(mrr, all_q.size(0))
acc = 100 * acc
message = []
if dist_utils.is_main():
message = [f"eval acc: {acc:.2f}%", f"eval mrr: {mrr:.3f}"]
logger.info(" | ".join(message))
if tb_logger is not None:
tb_logger.add_scalar(f"eval_acc", acc, step)
tb_logger.add_scalar(f"mrr", mrr, step)
def main():
logger.info("Start")
options = Options()
opt = options.parse()
torch.manual_seed(opt.seed)
slurm.init_distributed_mode(opt)
slurm.init_signal_handler()
directory_exists = os.path.isdir(opt.output_dir)
if dist.is_initialized():
dist.barrier()
os.makedirs(opt.output_dir, exist_ok=True)
if not directory_exists and dist_utils.is_main():
options.print_options(opt)
if dist.is_initialized():
dist.barrier()
utils.init_logger(opt)
step = 0
retriever, tokenizer, retriever_model_id = contriever.load_retriever(opt.model_path, opt.pooling, opt.random_init)
opt.retriever_model_id = retriever_model_id
model = inbatch.InBatch(opt, retriever, tokenizer)
model = model.cuda()
optimizer, scheduler = utils.set_optim(opt, model)
# if dist_utils.is_main():
# utils.save(model, optimizer, scheduler, global_step, 0., opt, opt.output_dir, f"step-{0}")
logger.info(utils.get_parameters(model))
for name, module in model.named_modules():
if isinstance(module, torch.nn.Dropout):
module.p = opt.dropout
if torch.distributed.is_initialized():
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[opt.local_rank],
output_device=opt.local_rank,
find_unused_parameters=False,
)
logger.info("Start training")
finetuning(opt, model, optimizer, scheduler, tokenizer, step)
if __name__ == "__main__":
main()