forked from gonum/gonum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve.go
140 lines (129 loc) · 3.38 KB
/
solve.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack/lapack64"
)
// Solve finds a minimum-norm solution to a system of linear equations defined
// by the matrices A and B. If A is singular or near-singular, a Condition error
// is returned. See the documentation for Condition for more information.
//
// The minimization problem solved depends on the input parameters:
// - if m >= n, find X such that ||A*X - B||_2 is minimized,
// - if m < n, find the minimum norm solution of A * X = B.
// The solution matrix, X, is stored in-place into the receiver.
func (m *Dense) Solve(a, b Matrix) error {
ar, ac := a.Dims()
br, bc := b.Dims()
if ar != br {
panic(ErrShape)
}
m.reuseAsNonZeroed(ac, bc)
// TODO(btracey): Add special cases for SymDense, etc.
aU, aTrans := untranspose(a)
bU, bTrans := untranspose(b)
switch rma := aU.(type) {
case RawTriangular:
side := blas.Left
tA := blas.NoTrans
if aTrans {
tA = blas.Trans
}
switch rm := bU.(type) {
case RawMatrixer:
if m != bU || bTrans {
if m == bU || m.checkOverlap(rm.RawMatrix()) {
tmp := getWorkspace(br, bc, false)
tmp.Copy(b)
m.Copy(tmp)
putWorkspace(tmp)
break
}
m.Copy(b)
}
default:
if m != bU {
m.Copy(b)
} else if bTrans {
// m and b share data so Copy cannot be used directly.
tmp := getWorkspace(br, bc, false)
tmp.Copy(b)
m.Copy(tmp)
putWorkspace(tmp)
}
}
rm := rma.RawTriangular()
blas64.Trsm(side, tA, 1, rm, m.mat)
work := getFloats(3*rm.N, false)
iwork := getInts(rm.N, false)
cond := lapack64.Trcon(CondNorm, rm, work, iwork)
putFloats(work)
putInts(iwork)
if cond > ConditionTolerance {
return Condition(cond)
}
return nil
}
switch {
case ar == ac:
if a == b {
// x = I.
if ar == 1 {
m.mat.Data[0] = 1
return nil
}
for i := 0; i < ar; i++ {
v := m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+ac]
zero(v)
v[i] = 1
}
return nil
}
var lu LU
lu.Factorize(a)
return lu.SolveTo(m, false, b)
case ar > ac:
var qr QR
qr.Factorize(a)
return qr.SolveTo(m, false, b)
default:
var lq LQ
lq.Factorize(a)
return lq.SolveTo(m, false, b)
}
}
// SolveVec finds a minimum-norm solution to a system of linear equations defined
// by the matrix a and the right-hand side column vector b. If A is singular or
// near-singular, a Condition error is returned. See the documentation for
// Dense.Solve for more information.
func (v *VecDense) SolveVec(a Matrix, b Vector) error {
if _, bc := b.Dims(); bc != 1 {
panic(ErrShape)
}
_, c := a.Dims()
// The Solve implementation is non-trivial, so rather than duplicate the code,
// instead recast the VecDenses as Dense and call the matrix code.
if rv, ok := b.(RawVectorer); ok {
bmat := rv.RawVector()
if v != b {
v.checkOverlap(bmat)
}
v.reuseAsNonZeroed(c)
m := v.asDense()
// We conditionally create bm as m when b and v are identical
// to prevent the overlap detection code from identifying m
// and bm as overlapping but not identical.
bm := m
if v != b {
b := VecDense{mat: bmat}
bm = b.asDense()
}
return m.Solve(a, bm)
}
v.reuseAsNonZeroed(c)
m := v.asDense()
return m.Solve(a, b)
}