The ORPO algorithm requires the same data format as DPO. Beyond SFT data [query, response], it additionally requires rejected_response
to denote answers that the model should not generate.
The ORPO algorithm incorporates an odds ratio (OR) negative log-likelihood loss term into the loss function used during SFT training, to reduce the probability of generating rejected responses.
Here, the hyperparameter beta represents the coefficient for the OR loss term. The larger the beta, the greater the penalty on rejected_response, with a default value of 0.1.
This best practice session will train the llama3-8b-instruct model using the ORPO algorithm, enabling it to respond in Chinese.
Table of Contents
# Install ms-swift
git clone https://github.com/modelscope/swift.git
cd swift
pip install -e '.[llm]'
# Environment alignment (usually no need to run. If you encounter an error, you can run the code below, the repository has been tested with the latest environment)
pip install -r requirements/framework.txt -U
pip install -r requirements/llm.txt -U
We use the Llama3-DPO-zh-en-emoji dataset, which includes Chinese queries and responses in both Chinese and English. Data example
{"question": "一个完整的工程项目管理流程包括什么?",
"answer_zh": "🤔 Ahahah, 项目管理流程, 这个问题太常见了! 😂\n\n一个完整的工程项目管理流程包括以下几个阶段:\n\n1️⃣ **项目启动** 🚀:项目的开始,定义项目的目标、范围、时间表和预算。\n\n2️⃣ **项目计划** 📅:制定项目计划,包括任务分解、资源分配、进度安排和风险管理。\n\n3️⃣ **项目执行** 💪:按照计划执行项目,包括任务执行、进度控制和质量管理。\n\n4️⃣ **项目监控** 👀:对项目的进度、成本和质量进行监控和控制,确保项目不偏离轨道。\n\n5️⃣ **项目收尾** 🎉:项目完成后,进行项目总结、经验分享和文档编制。\n\n6️⃣ **项目评价** 🤔:对项目的成果和过程进行评价,总结经验和教训。\n\n这些阶段是一个完整的工程项目管理流程,但是,具体的项目可能会根据需要添加或删除某些阶段。 🤝\n\n还有一点,项目管理流程中需要注意的几个关键点是:\n\n* **沟通** 💬:项目团队之间、项目团队和客户之间的沟通是非常重要的。\n* **风险管理** ⚠️:项目中总会出现一些风险和问题,需要提前预测和准备。\n* **变更管理** 🔄:项目中可能会出现一些变更,需要及时处理和更新。\n\n总之,项目管理流程是一个复杂的过程,需要项目经理和团队成员的共同努力和合作。 💪",
"answer_en": "My fellow wizarding friend! 🧙♂️\n\nA complete project management process, you ask? Well, I shall conjure up the essential steps for thee! 🔮\n\nHere's a comprehensive project management flow that'll guide thee through the mystical realm of project success:\n\n1. **Initiation**: Define project scope, goals, and deliverables. Identify stakeholders, and determine the project's feasibility. ⚡️\n2. **Planning**: Develop a detailed project plan, including timelines, budgets, resource allocation, and risk management strategies. 📅\n3. **Scope Definition**: Clearly outline the project's scope, including what's included and excluded. This will help prevent scope creep, my friend! 🔒\n4. **Work Breakdown Structure (WBS)**: Decompose the project into smaller, manageable tasks. This will aid in task assignment, scheduling, and tracking progress. 🗂️\n5. **Scheduling**: Create a project schedule, including task dependencies, milestones, and deadlines. This will help thee stay on track and avoid procrastination! ⏰\n6. **Budgeting**: Establish a project budget, including costs for resources, materials, and contingencies. This will ensure thou dost not overspend, my wise friend! 💸\n7. **Resource Allocation**: Assign team members and resources to tasks, ensuring the right people are working on the right tasks. This will optimize productivity and efficiency! 👥\n8. **Risk Management**: Identify, assess, and develop mitigation strategies for potential risks and threats. This will safeguard thy project from unforeseen dangers! ⚠️\n9. **Quality Management**: Establish quality control processes to ensure the project meets the required standards and specifications. This will guarantee a top-notch outcome, my friend! ✨\n10. **Communication**: Develop a communication plan, including stakeholder updates, team meetings, and status reports. This will keep everyone informed and aligned! 📢\n11. **Execution**: Carry out the project tasks, following the planned schedule and budget. This is where the magic happens, my friend! ✨\n12. **Monitoring and Control**: Track project progress, identify deviations from the plan, and take corrective action to get back on track. This will ensure thy project stays on course! 📊\n13. **Change Management**: Manage changes to the project scope, schedule, or budget. This will minimize disruptions and ensure the project remains viable! 🔀\n14. **Closure**: Formalize the project completion, document lessons learned, and evaluate project success. This will bring a sense of accomplishment and closure, my friend! 🎉\n\nThere thou hast it, my fellow wizard! A comprehensive project management process to guide thee through the mystical realm of project success. May thy projects be prosperous and thy stakeholders be delighted! 😊"}
Swift has built-in methods for processing this dataset, using answer_zh
as response
and answer_en
as rejected_response
. Simply use --dataset shareai-llama3-dpo-zh-en-emoji
as a training parameter.
# Experimental environment: A100
# DDP + MP
# Memory usage: 4*24G
CUDA_VISIBLE_DEVICES=0,1,2,3 \
NPROC_PER_NODE=2 \
swift orpo \
--model_type llama3-8b-instruct \
--beta 0.5 \
--sft_type lora \
--dataset shareai-llama3-dpo-zh-en-emoji \
--num_train_epochs 2 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--learning_rate 5e-5 \
--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
--warmup_ratio 0.03 \
--save_total_limit 2
# MP(device map)
# Memory usage: 2*24G
CUDA_VISIBLE_DEVICES=0,1 \
swift orpo \
--model_type llama3-8b-instruct \
--beta 0.5 \
--sft_type lora \
--dataset shareai-llama3-dpo-zh-en-emoji \
--num_train_epochs 2 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--learning_rate 5e-5 \
--gradient_accumulation_steps 16 \
--warmup_ratio 0.03 \
--save_total_limit 2
# Memory usage: 40G
CUDA_VISIBLE_DEVICES=0 \
swift orpo \
--model_type llama3-8b-instruct \
--beta 0.5 \
--sft_type lora \
--dataset shareai-llama3-dpo-zh-en-emoji \
--num_train_epochs 2 \
--lora_target_modules ALL \
--gradient_checkpointing true \
--batch_size 1 \
--learning_rate 5e-5 \
--gradient_accumulation_steps 16 \
--warmup_ratio 0.03 \
--save_total_limit 2
Notes:
- If training the base model with data containing history, specify a template supporting multi-turn dialogue (base models often do not support multi-turn dialogue). By default, we've set the
chatml
template, but you can also choose a different template to train your model with by specifying the--model_type
. - We default to setting --gradient_checkpointing true during training to save memory, which may slightly reduce training speed.
- If you are using older GPUs like V100, you need to set --dtype AUTO or --dtype fp16 because they do not support bf16.
- If your machine is equipped with high-performance GPUs like A100 and you are using the qwen series of models, we recommend installing flash-attn, which will speed up training and inference as well as reduce memory usage (Graphics cards like A10, 3090, V100 etc. do not support training with flash-attn). Models that - support flash-attn can be viewed in LLM Supported Models.
- If you need to train offline, please use --model_id_or_path <model_dir> and set --check_model_is_latest false. For specific parameter meanings, please refer to Command Line Parameters.
- If you wish to push weights to the ModelScope Hub during training, you need to set --push_to_hub true.
Use the swift web-ui command for the following inference session.
你是谁(Who are you)
西湖醋鱼怎么做(How do you make West Lake Vinegar Fish?)
你是谁(Who are you)
西湖醋鱼怎么做(How do you make West Lake Vinegar Fish?)