Segmentation models with pretrained backbones
Backbone model | Name | Weights | UNet | FPN |
---|---|---|---|---|
VGG16 | vgg16 |
imagenet |
+ | - |
VGG19 | vgg19 |
imagenet |
+ | - |
ResNet18 | resnet18 |
imagenet |
+ | + |
ResNet34 | resnet34 |
imagenet |
+ | + |
ResNet50 | resnet50 |
imagenet imagenet11k-place365ch |
+ | + |
ResNet101 | resnet101 |
imagenet |
+ | + |
ResNet152 | resnet152 |
imagenet imagenet11k imagenet11k-place365ch |
+ | + |
ResNeXt50 | resnext50 |
imagenet |
+ | + |
ResNeXt101 | resnext101 |
imagenet |
+ | + |
DenseNet121 | densenet121 |
imagenet |
+ | + |
DenseNet169 | densenet169 |
imagenet |
+ | + |
DenseNet201 | densenet201 |
imagenet |
+ | + |
Inception V3 | inceptionv3 |
imagenet |
+ | + |
Inception ResNet V2 | inceptionresnetv2 |
imagenet |
+ | + |
Use Unet model:
from segmentation_models import Unet
# prepare data
x, y = ...
# prepare model
model = Unet(backbone_name='resnet34`, encoder_weigths='imagenet')
model.compile('Adam', 'binary_crossentropy', 'binary_accuracy')
# train model
model.fit(x, y)