-
Notifications
You must be signed in to change notification settings - Fork 273
/
Copy pathtest_yolov8_train.py
80 lines (67 loc) · 4.68 KB
/
test_yolov8_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import argparse
import colorama
from ultralytics import YOLO
import torch
import os
# Blog:
# https://blog.csdn.net/fengbingchun/article/details/139203567
# https://blog.csdn.net/fengbingchun/article/details/140691177
# https://blog.csdn.net/fengbingchun/article/details/140850285
def parse_args():
parser = argparse.ArgumentParser(description="YOLOv8 train")
parser.add_argument("--task", required=True, type=str, choices=["detect", "segment", "classify"], help="specify what kind of task")
parser.add_argument("--yaml", required=True, type=str, help="yaml file or datasets path(classify)")
parser.add_argument("--epochs", type=int, default=1000, help="number of training")
parser.add_argument("--imgsz", type=int, default=640, help="input net image size")
parser.add_argument("--patience", type=int, default=100, help="number of epochs to wait without improvement in validation metrics before early stopping the training")
parser.add_argument("--batch", type=int, default=16, help="batch size")
parser.add_argument("--optimizer", type=str, default="auto", help="choice of optimizer for training")
parser.add_argument("--lr0", type=float, default=0.01, help="initial learning rate")
parser.add_argument("--lrf", type=float, default=0.01, help="final learning rate as a fraction of the initial rate=(lr0*lrf)")
parser.add_argument("--dropout", type=float, default=0.0, help="dropout rate for regularization in classification tasks")
parser.add_argument("--pretrained_model", type=str, default="", help="pretrained model loaded during training")
parser.add_argument("--gpu", type=str, default="0", help="set which graphics card to use. it can also support multiple graphics cards at the same time, for example 0,1")
parser.add_argument("--augment", action="store_true", help="augment inference")
args = parser.parse_args()
return args
def train(task, yaml, epochs, imgsz, patience, batch, optimizer, lr0, lrf, dropout, pretrained_model, augment):
if pretrained_model != "":
model = YOLO(pretrained_model)
else:
if task == "detect":
model = YOLO("yolov8n.pt") # load a pretrained model, should be a *.pt PyTorch model to run this method
elif task == "segment":
model = YOLO("yolov8n-seg.pt") # load a pretrained model, should be a *.pt PyTorch model to run this method
elif task == "classify":
model = YOLO("yolov8n-cls.pt") # n/s/m/l/x
else:
raise ValueError(colorama.Fore.RED + f"Error: unsupported task: {task}")
# petience: Training stopped early as no improvement observed in last patience epochs, use patience=0 to disable EarlyStopping
results = model.train(data=yaml, epochs=epochs, imgsz=imgsz, patience=patience, batch=batch, optimizer=optimizer, lr0=lr0, lrf=lrf, dropout=dropout, augment=augment) # train the model, supported parameter reference, for example: runs/segment(detect)/train3/args.yaml
metrics = model.val() # It'll automatically evaluate the data you trained, no arguments needed, dataset and settings remembered
if task == "classify":
print(f"Top-1 Accuracy:{metrics.top1:.6f}") # top1 accuracy
print(f"Top-5 Accuracy: {metrics.top5:.6f}") # top5 accuracy
model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=imgsz) # onnx, export the model, cannot specify dynamic=True, opencv does not support
# model.export(format="torchscript", imgsz=imgsz) # libtorch
# model.export(format="engine", imgsz=imgsz, dynamic=False, verbose=False, batch=1, workspace=2) # tensorrt fp32
# model.export(format="engine", imgsz=imgsz, dynamic=False, verbose=False, batch=1, workspace=2, half=True) # tensorrt fp16
# model.export(format="engine", imgsz=imgsz, dynamic=False, verbose=False, batch=1, workspace=2, int8=True, data=yaml) # tensorrt int8
# model.export(format="openvino", imgsz=imgsz) # openvino fp32
# model.export(format="openvino", imgsz=imgsz, half=True) # openvino fp16
# model.export(format="openvino", imgsz=imgsz, int8=True, data=yaml) # openvino int8, INT8 export requires 'data' arg for calibration
def set_gpu(id):
os.environ["CUDA_VISIBLE_DEVICES"] = id # set which graphics card to use: 0,1,2..., default is 0
print("available gpus:", torch.cuda.device_count())
print("current gpu device:", torch.cuda.current_device())
if __name__ == "__main__":
# python test_yolov8_train.py --yaml datasets/melon_new_detect/melon_new_detect.yaml --epochs 1000 --task detect --imgsz 640
colorama.init(autoreset=True)
args = parse_args()
if torch.cuda.is_available():
print("Running on GPU")
set_gpu(args.gpu)
else:
print("Running on CPU")
train(args.task, args.yaml, args.epochs, args.imgsz, args.patience, args.batch, args.optimizer, args.lr0, args.lrf, args.dropout, args.pretrained_model, args.augment)
print(colorama.Fore.GREEN + "====== execution completed ======")