-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutils.py
463 lines (384 loc) · 17.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
from models.NDM_model import vgg_19
from PIL import Image
from torch.autograd import Variable
from torch.optim import lr_scheduler
from torchvision import transforms
import torch
import torchvision.utils as vutils
import torch.utils.data as data
import yaml
import cv2
import torch.nn.init as init
import os
from pylab import *
from numpy.lib.stride_tricks import as_strided as ast
class data_prefetcher():
def __init__(self, loader):
self.loader = iter(loader)
self.stream = torch.cuda.Stream()
self.preload()
def next(self):
torch.cuda.current_stream(device=None).wait_stream(self.stream)
input = self.next_input
self.preload()
return input
def preload(self):
try:
self.next_input = next(self.loader)
except StopIteration:
self.next_input = None
return
with torch.cuda.stream(self.stream):
self.next_input = self.next_input.cuda(non_blocking=True)
def default_loader(path):
return Image.open(path).convert('RGB')
def histeq(im, nbr_bins=256):
imhist, bins = histogram(im.flatten(), nbr_bins)
cdf = imhist.cumsum()
cdf = 1.0 * cdf / cdf[-1]
im2 = interp(im.flatten(), bins[:-1], cdf)
return im2.reshape(im.shape)
class ImageFolder(data.Dataset):
def __init__(self, root, transform=None, return_paths=False,
loader=default_loader):
images = sorted(make_dataset(root))
if len(images) == 0:
raise (RuntimeError("Found 0 images in: " + root + "\n"
"Supported image extensions are: " +
",".join(IMG_EXTENSIONS)))
self.root = root
self.images = images
self.transform = transform
self.return_paths = return_paths
self.loader = loader
def __getitem__(self, index):
path = self.images[index]
image = self.loader(path)
if self.transform is not None:
image = self.transform(image)
if self.return_paths:
return image, path
else:
return image
def __len__(self):
return len(self.images)
def get_config(config):
with open(config, 'r') as stream:
loader = yaml.load(stream, Loader=yaml.FullLoader)
return loader
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP']
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def make_dataset(dir):
images = []
assert os.path.isdir(dir), '%s is not a valid directory' % dir
for root, _, fnames in sorted(os.walk(dir)):
for fname in fnames:
if is_image_file(fname):
path = os.path.join(root, fname)
images.append(path)
return images
def get_all_data_loaders(conf):
batch_size = conf['batch_size']
num_workers = conf['num_workers']
if 'new_size' in conf:
new_size_x = new_size_y = conf['new_size']
else:
new_size_x = conf['new_size_x']
new_size_y = conf['new_size_y']
height = conf['crop_image_height']
width = conf['crop_image_width']
train_loader_x = get_data_loader_folder(os.path.join(conf['data_root_x'], 'train_x'), batch_size, True,
new_size_x, height, width, num_workers, True)
train_loader_y = get_data_loader_folder(os.path.join(conf['data_root_y'], 'trainB'), batch_size, True,
new_size_y, height, width, num_workers, True)
test_loader_x = get_data_loader_folder(os.path.join(conf['data_root_x'], 'test_x'), batch_size, False,
new_size_x, new_size_x, new_size_x, num_workers, False)
test_loader_y = get_data_loader_folder(os.path.join(conf['data_root_y'], 'testB'), batch_size, False,
new_size_y, new_size_y, new_size_y, num_workers, False)
return train_loader_x, train_loader_y, test_loader_x, test_loader_y
def get_data_loader_folder(input_folder, batch_size, train, new_size=None,
height=256, width=256, num_workers=4, crop=True):
transform_list = [transforms.ToTensor()]
transform_list = [transforms.RandomCrop((height, width))] + transform_list if crop else transform_list
# transform_list = [transforms.Resize(new_size)] + transform_list if new_size else transform_list
transform_list = [transforms.RandomHorizontalFlip()] + transform_list if train else transform_list
transform = transforms.Compose(transform_list)
dataset = ImageFolder(input_folder, transform=transform)
if train:
loader = data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=train, drop_last=True,
num_workers=num_workers, pin_memory=True)
else:
loader = data.DataLoader(dataset=dataset, batch_size=1, shuffle=True, drop_last=True,
num_workers=num_workers, pin_memory=True)
return loader
def write_images(image_outputs, display_image_num, file_name):
image_outputs = [images.expand(-1, 3, -1, -1) for images in image_outputs] # expand gray-scale images to 3 channels
image_tensor = torch.cat([images[:display_image_num] for images in image_outputs], 0)
image_grid = vutils.make_grid(image_tensor.data, nrow=display_image_num, padding=0, normalize=False)
vutils.save_image(image_grid, file_name, nrow=1)
def write2images(image_outputs, display_image_num, image_directory, postfix):
n = len(image_outputs)
write_images(image_outputs[0:n // 2], display_image_num, '%s/gen_a2b_%s.jpg' % (image_directory, postfix))
write_images(image_outputs[n // 2:n], display_image_num, '%s/gen_b2a_%s.jpg' % (image_directory, postfix))
def write_one_row_html(html_file, iterations, img_filename, all_size):
html_file.write("<h3>iteration [%d] (%s)</h3>" % (iterations, img_filename.split('/')[-1]))
html_file.write("""
<p><a href="%s">
<img src="%s" style="width:%dpx">
</a><br>
<p>
""" % (img_filename, img_filename, all_size))
return
def write_html(filename, iterations, image_save_iterations, image_directory, all_size=1536):
html_file = open(filename, "w")
html_file.write('''
<!DOCTYPE html>
<html>
<head>
<title>Experiment name = %s</title>
<meta http-equiv="refresh" content="30">
</head>
<body>
''' % os.path.basename(filename))
html_file.write("<h3>current</h3>")
write_one_row_html(html_file, iterations, '%s/gen_a2b_train_current.jpg' % (image_directory), all_size)
write_one_row_html(html_file, iterations, '%s/gen_b2a_train_current.jpg' % (image_directory), all_size)
for j in range(iterations, image_save_iterations - 1, -1):
if j % image_save_iterations == 0:
write_one_row_html(html_file, j, '%s/gen_a2b_test_%08d.jpg' % (image_directory, j), all_size)
write_one_row_html(html_file, j, '%s/gen_b2a_test_%08d.jpg' % (image_directory, j), all_size)
write_one_row_html(html_file, j, '%s/gen_a2b_train_%08d.jpg' % (image_directory, j), all_size)
write_one_row_html(html_file, j, '%s/gen_b2a_train_%08d.jpg' % (image_directory, j), all_size)
html_file.write("</body></html>")
html_file.close()
def write_loss(iterations, trainer, train_writer):
members = [attr for attr in dir(trainer)
if not callable(getattr(trainer, attr)) and not attr.startswith("__") and (
'loss' in attr or 'grad' in attr or 'nwd' in attr)]
for m in members:
train_writer.add_scalar(m, getattr(trainer, m), iterations + 1)
# Get model list for resume
def get_model_list(dirname, key):
if os.path.exists(dirname) is False:
return None
gen_models = [os.path.join(dirname, f) for f in os.listdir(dirname) if
os.path.isfile(os.path.join(dirname, f)) and key in f and ".pt" in f]
if gen_models is None:
return None
gen_models.sort()
last_model_name = gen_models[-1]
return last_model_name
def load_vgg19(index):
vgg = vgg_19(index)
return vgg
def vgg_preprocess(batch):
tensor_type = type(batch.data)
(r, g, b) = torch.chunk(batch, 3, dim=1)
batch = torch.cat((b, g, r), dim=1) # convert RGB to BGR
batch = batch * 255 # * 0.5 [-1, 1] -> [0, 255]
mean = tensor_type(batch.data.size()).cuda()
mean[:, 0, :, :] = 103.939
mean[:, 1, :, :] = 116.779
mean[:, 2, :, :] = 123.680
batch = batch.sub(Variable(mean)) # subtract mean
return batch
def get_scheduler(optimizer, hyperparameters, iterations=-1):
if 'lr_policy' not in hyperparameters or hyperparameters['lr_policy'] == 'constant':
scheduler = None # constant scheduler
elif hyperparameters['lr_policy'] == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=hyperparameters['step_size'],
gamma=hyperparameters['gamma'], last_epoch=iterations)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', hyperparameters['lr_policy'])
return scheduler
def weights_init(init_type='gaussian'):
def init_fun(m):
classname = m.__class__.__name__
if (classname.find('Conv') == 0 or classname.find('Linear') == 0) and hasattr(m, 'weight'):
# print m.__class__.__name__
if init_type == 'gaussian':
init.normal_(m.weight.data, 0.0, 0.02)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=math.sqrt(2))
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=math.sqrt(2))
elif init_type == 'default':
pass
else:
assert 0, "Unsupported initialization: {}".format(init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
return init_fun
def data_augmentation(image, mode):
if mode == 0:
# original
return image
elif mode == 1:
# flip up and down
return np.flipud(image)
elif mode == 2:
# rotate counterwise 90 degree
return np.rot90(image)
elif mode == 3:
# rotate 90 degree and flip up and down
image = np.rot90(image)
return np.flipud(image)
elif mode == 4:
# rotate 180 degree
return np.rot90(image, k=2)
elif mode == 5:
# rotate 180 degree and flip
image = np.rot90(image, k=2)
return np.flipud(image)
elif mode == 6:
# rotate 270 degree
return np.rot90(image, k=3)
elif mode == 7:
# rotate 270 degree and flip
image = np.rot90(image, k=3)
return np.flipud(image)
def save_img(img,save_folder,img_name):
save_img_path = os.path.join(save_folder, img_name + '.png')
cv2.imwrite(save_img_path, img)
def load_images(file):
im = Image.open(file).convert('RGB')
img = np.array(im, dtype="float32") / 255.0
img_max = np.max(img)
img_min = np.min(img)
img_norm = np.float32((img - img_min) / np.maximum((img_max - img_min), 0.001))
return img_norm
def load_images_gray(file):
im = Image.open(file).convert('L')
img = np.array(im, dtype="float32") / 255.0
img_max = np.max(img)
img_min = np.min(img)
img_norm = np.float32((img - img_min) / np.maximum((img_max - img_min), 0.001))
return img_norm
def load_images_no_norm(file):
im = Image.open(file).convert('RGB')
img = np.array(im, dtype="float32") / 255.0
return img
def load_images_no_norm_gray(file):
im = Image.open(file).convert('L')
img = np.array(im, dtype="float32") / 255.0
return img
class Timer:
def __init__(self, msg):
self.msg = msg
self.start_time = None
def __enter__(self):
self.start_time = time.time()
def __exit__(self, exc_type, exc_value, exc_tb):
print(self.msg % (time.time() - self.start_time))
def singleScaleRetinex(img, sigma):
retinex = np.log10(img) - np.log10(cv2.GaussianBlur(img, (0, 0), sigma))
return retinex
def multiScaleRetinex(img, sigma_list):
retinex = np.zeros_like(img)
for sigma in sigma_list:
retinex += singleScaleRetinex(img, sigma)
retinex = retinex / len(sigma_list)
return retinex
def colorRestoration(img, alpha, beta):
img_sum = np.sum(img, axis=2, keepdims=True)
color_restoration = beta * (np.log10(alpha * img) - np.log10(img_sum))
return color_restoration
def simplestColorBalance(img, low_clip, high_clip):
total = img.shape[0] * img.shape[1]
for i in range(img.shape[2]):
unique, counts = np.unique(img[:, :, i], return_counts=True)
current = 0
for u, c in zip(unique, counts):
if float(current) / total < low_clip:
low_val = u
if float(current) / total < high_clip:
high_val = u
current += c
img[:, :, i] = np.maximum(np.minimum(img[:, :, i], high_val), low_val)
return img
def MSRCR(img, sigma_list, G, b, alpha, beta, low_clip, high_clip):
img = np.float64(img) + 1.0
img_retinex = multiScaleRetinex(img, sigma_list)
img_color = colorRestoration(img, alpha, beta)
img_msrcr = G * (img_retinex * img_color + b)
for i in range(img_msrcr.shape[2]):
img_msrcr[:, :, i] = (img_msrcr[:, :, i] - np.min(img_msrcr[:, :, i])) / \
(np.max(img_msrcr[:, :, i]) - np.min(img_msrcr[:, :, i])) * \
255
img_msrcr = np.uint8(np.minimum(np.maximum(img_msrcr, 0), 255))
img_msrcr = simplestColorBalance(img_msrcr, low_clip, high_clip)
return img_msrcr
def automatedMSRCR(img, sigma_list):
img = np.float64(img) + 1.0
img_retinex = multiScaleRetinex(img, sigma_list)
for i in range(img_retinex.shape[2]):
unique, count = np.unique(np.int32(img_retinex[:, :, i] * 100), return_counts=True)
for u, c in zip(unique, count):
if u == 0:
zero_count = c
break
low_val = unique[0] / 100.0
high_val = unique[-1] / 100.0
for u, c in zip(unique, count):
if u < 0 and c < zero_count * 0.1:
low_val = u / 100.0
if u > 0 and c < zero_count * 0.1:
high_val = u / 100.0
break
img_retinex[:, :, i] = np.maximum(np.minimum(img_retinex[:, :, i], high_val), low_val)
img_retinex[:, :, i] = (img_retinex[:, :, i] - np.min(img_retinex[:, :, i])) / \
(np.max(img_retinex[:, :, i]) - np.min(img_retinex[:, :, i])) \
* 255
img_retinex = np.uint8(img_retinex)
return img_retinex
def MSRCP(img, sigma_list, low_clip, high_clip):
img = np.float64(img) + 1.0
intensity = np.sum(img, axis=2) / img.shape[2]
retinex = multiScaleRetinex(intensity, sigma_list)
intensity = np.expand_dims(intensity, 2)
retinex = np.expand_dims(retinex, 2)
intensity1 = simplestColorBalance(retinex, low_clip, high_clip)
intensity1 = (intensity1 - np.min(intensity1)) / \
(np.max(intensity1) - np.min(intensity1)) * \
255.0 + 1.0
img_msrcp = np.zeros_like(img)
for y in range(img_msrcp.shape[0]):
for x in range(img_msrcp.shape[1]):
B = np.max(img[y, x])
A = np.minimum(256.0 / B, intensity1[y, x, 0] / intensity[y, x, 0])
img_msrcp[y, x, 0] = A * img[y, x, 0]
img_msrcp[y, x, 1] = A * img[y, x, 1]
img_msrcp[y, x, 2] = A * img[y, x, 2]
img_msrcp = np.uint8(img_msrcp - 1.0)
return img_msrcp
def block_view(A, block=(3, 3)):
"""Provide a 2D block view to 2D array. No error checking made.
Therefore meaningful (as implemented) only for blocks strictly
compatible with the shape of A."""
# simple shape and strides computations may seem at first strange
# unless one is able to recognize the 'tuple additions' involved ;-)
shape = (A.shape[0]/ block[0], A.shape[1]/ block[1])+ block
strides = (block[0]* A.strides[0], block[1]* A.strides[1])+ A.strides
return ast(A, shape= shape, strides= strides)
def psnr_metric(img1, img2):
mse = np.mean( (img1 - img2) ** 2 )
if mse == 0:
return 100
PIXEL_MAX = 255.0
return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
def ssim_metric(img1, img2, C1=0.01**2, C2=0.03**2):
bimg1 = block_view(img1, (4,4))
bimg2 = block_view(img2, (4,4))
s1 = np.sum(bimg1, (-1, -2))
s2 = np.sum(bimg2, (-1, -2))
ss = np.sum(bimg1*bimg1, (-1, -2)) + np.sum(bimg2*bimg2, (-1, -2))
s12 = np.sum(bimg1*bimg2, (-1, -2))
vari = ss - s1*s1 - s2*s2
covar = s12 - s1*s2
ssim_map = (2*s1*s2 + C1) * (2*covar + C2) / ((s1*s1 + s2*s2 + C1) * (vari + C2))
return np.mean(ssim_map)