forked from nillerusr/source-engine
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcolor_conversion.cpp
637 lines (554 loc) · 20.8 KB
/
color_conversion.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Color conversion routines.
//
//=====================================================================================//
#include <math.h>
#include <float.h> // Needed for FLT_EPSILON
#include "basetypes.h"
#include <memory.h>
#include "tier0/dbg.h"
#include "mathlib/mathlib.h"
#include "mathlib/vector.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// Gamma conversion support
//-----------------------------------------------------------------------------
static byte texgammatable[256]; // palette is sent through this to convert to screen gamma
static float texturetolinear[256]; // texture (0..255) to linear (0..1)
static int lineartotexture[1024]; // linear (0..1) to texture (0..255)
static int lineartoscreen[1024]; // linear (0..1) to gamma corrected vertex light (0..255)
// build a lightmap texture to combine with surface texture, adjust for src*dst+dst*src, ramp reprogramming, etc
float lineartovertex[4096]; // linear (0..4) to screen corrected vertex space (0..1?)
unsigned char lineartolightmap[4096]; // linear (0..4) to screen corrected texture value (0..255)
static float g_Mathlib_GammaToLinear[256]; // gamma (0..1) to linear (0..1)
static float g_Mathlib_LinearToGamma[256]; // linear (0..1) to gamma (0..1)
// This is aligned to 16-byte boundaries so that we can load it
// onto SIMD registers easily if needed (used by SSE version of lightmaps)
// TODO: move this into the one DLL that actually uses it, instead of statically
// linking it everywhere via mathlib.
ALIGN128 float power2_n[256] = // 2**(index - 128) / 255
{
1.152445441982634800E-041, 2.304890883965269600E-041, 4.609781767930539200E-041, 9.219563535861078400E-041,
1.843912707172215700E-040, 3.687825414344431300E-040, 7.375650828688862700E-040, 1.475130165737772500E-039,
2.950260331475545100E-039, 5.900520662951090200E-039, 1.180104132590218000E-038, 2.360208265180436100E-038,
4.720416530360872100E-038, 9.440833060721744200E-038, 1.888166612144348800E-037, 3.776333224288697700E-037,
7.552666448577395400E-037, 1.510533289715479100E-036, 3.021066579430958200E-036, 6.042133158861916300E-036,
1.208426631772383300E-035, 2.416853263544766500E-035, 4.833706527089533100E-035, 9.667413054179066100E-035,
1.933482610835813200E-034, 3.866965221671626400E-034, 7.733930443343252900E-034, 1.546786088668650600E-033,
3.093572177337301200E-033, 6.187144354674602300E-033, 1.237428870934920500E-032, 2.474857741869840900E-032,
4.949715483739681800E-032, 9.899430967479363700E-032, 1.979886193495872700E-031, 3.959772386991745500E-031,
7.919544773983491000E-031, 1.583908954796698200E-030, 3.167817909593396400E-030, 6.335635819186792800E-030,
1.267127163837358600E-029, 2.534254327674717100E-029, 5.068508655349434200E-029, 1.013701731069886800E-028,
2.027403462139773700E-028, 4.054806924279547400E-028, 8.109613848559094700E-028, 1.621922769711818900E-027,
3.243845539423637900E-027, 6.487691078847275800E-027, 1.297538215769455200E-026, 2.595076431538910300E-026,
5.190152863077820600E-026, 1.038030572615564100E-025, 2.076061145231128300E-025, 4.152122290462256500E-025,
8.304244580924513000E-025, 1.660848916184902600E-024, 3.321697832369805200E-024, 6.643395664739610400E-024,
1.328679132947922100E-023, 2.657358265895844200E-023, 5.314716531791688300E-023, 1.062943306358337700E-022,
2.125886612716675300E-022, 4.251773225433350700E-022, 8.503546450866701300E-022, 1.700709290173340300E-021,
3.401418580346680500E-021, 6.802837160693361100E-021, 1.360567432138672200E-020, 2.721134864277344400E-020,
5.442269728554688800E-020, 1.088453945710937800E-019, 2.176907891421875500E-019, 4.353815782843751100E-019,
8.707631565687502200E-019, 1.741526313137500400E-018, 3.483052626275000900E-018, 6.966105252550001700E-018,
1.393221050510000300E-017, 2.786442101020000700E-017, 5.572884202040001400E-017, 1.114576840408000300E-016,
2.229153680816000600E-016, 4.458307361632001100E-016, 8.916614723264002200E-016, 1.783322944652800400E-015,
3.566645889305600900E-015, 7.133291778611201800E-015, 1.426658355722240400E-014, 2.853316711444480700E-014,
5.706633422888961400E-014, 1.141326684577792300E-013, 2.282653369155584600E-013, 4.565306738311169100E-013,
9.130613476622338300E-013, 1.826122695324467700E-012, 3.652245390648935300E-012, 7.304490781297870600E-012,
1.460898156259574100E-011, 2.921796312519148200E-011, 5.843592625038296500E-011, 1.168718525007659300E-010,
2.337437050015318600E-010, 4.674874100030637200E-010, 9.349748200061274400E-010, 1.869949640012254900E-009,
3.739899280024509800E-009, 7.479798560049019500E-009, 1.495959712009803900E-008, 2.991919424019607800E-008,
5.983838848039215600E-008, 1.196767769607843100E-007, 2.393535539215686200E-007, 4.787071078431372500E-007,
9.574142156862745000E-007, 1.914828431372549000E-006, 3.829656862745098000E-006, 7.659313725490196000E-006,
1.531862745098039200E-005, 3.063725490196078400E-005, 6.127450980392156800E-005, 1.225490196078431400E-004,
2.450980392156862700E-004, 4.901960784313725400E-004, 9.803921568627450800E-004, 1.960784313725490200E-003,
3.921568627450980300E-003, 7.843137254901960700E-003, 1.568627450980392100E-002, 3.137254901960784300E-002,
6.274509803921568500E-002, 1.254901960784313700E-001, 2.509803921568627400E-001, 5.019607843137254800E-001,
1.003921568627451000E+000, 2.007843137254901900E+000, 4.015686274509803900E+000, 8.031372549019607700E+000,
1.606274509803921500E+001, 3.212549019607843100E+001, 6.425098039215686200E+001, 1.285019607843137200E+002,
2.570039215686274500E+002, 5.140078431372548900E+002, 1.028015686274509800E+003, 2.056031372549019600E+003,
4.112062745098039200E+003, 8.224125490196078300E+003, 1.644825098039215700E+004, 3.289650196078431300E+004,
6.579300392156862700E+004, 1.315860078431372500E+005, 2.631720156862745100E+005, 5.263440313725490100E+005,
1.052688062745098000E+006, 2.105376125490196000E+006, 4.210752250980392100E+006, 8.421504501960784200E+006,
1.684300900392156800E+007, 3.368601800784313700E+007, 6.737203601568627400E+007, 1.347440720313725500E+008,
2.694881440627450900E+008, 5.389762881254901900E+008, 1.077952576250980400E+009, 2.155905152501960800E+009,
4.311810305003921500E+009, 8.623620610007843000E+009, 1.724724122001568600E+010, 3.449448244003137200E+010,
6.898896488006274400E+010, 1.379779297601254900E+011, 2.759558595202509800E+011, 5.519117190405019500E+011,
1.103823438081003900E+012, 2.207646876162007800E+012, 4.415293752324015600E+012, 8.830587504648031200E+012,
1.766117500929606200E+013, 3.532235001859212500E+013, 7.064470003718425000E+013, 1.412894000743685000E+014,
2.825788001487370000E+014, 5.651576002974740000E+014, 1.130315200594948000E+015, 2.260630401189896000E+015,
4.521260802379792000E+015, 9.042521604759584000E+015, 1.808504320951916800E+016, 3.617008641903833600E+016,
7.234017283807667200E+016, 1.446803456761533400E+017, 2.893606913523066900E+017, 5.787213827046133800E+017,
1.157442765409226800E+018, 2.314885530818453500E+018, 4.629771061636907000E+018, 9.259542123273814000E+018,
1.851908424654762800E+019, 3.703816849309525600E+019, 7.407633698619051200E+019, 1.481526739723810200E+020,
2.963053479447620500E+020, 5.926106958895241000E+020, 1.185221391779048200E+021, 2.370442783558096400E+021,
4.740885567116192800E+021, 9.481771134232385600E+021, 1.896354226846477100E+022, 3.792708453692954200E+022,
7.585416907385908400E+022, 1.517083381477181700E+023, 3.034166762954363400E+023, 6.068333525908726800E+023,
1.213666705181745400E+024, 2.427333410363490700E+024, 4.854666820726981400E+024, 9.709333641453962800E+024,
1.941866728290792600E+025, 3.883733456581585100E+025, 7.767466913163170200E+025, 1.553493382632634000E+026,
3.106986765265268100E+026, 6.213973530530536200E+026, 1.242794706106107200E+027, 2.485589412212214500E+027,
4.971178824424429000E+027, 9.942357648848857900E+027, 1.988471529769771600E+028, 3.976943059539543200E+028,
7.953886119079086300E+028, 1.590777223815817300E+029, 3.181554447631634500E+029, 6.363108895263269100E+029,
1.272621779052653800E+030, 2.545243558105307600E+030, 5.090487116210615300E+030, 1.018097423242123100E+031,
2.036194846484246100E+031, 4.072389692968492200E+031, 8.144779385936984400E+031, 1.628955877187396900E+032,
3.257911754374793800E+032, 6.515823508749587500E+032, 1.303164701749917500E+033, 2.606329403499835000E+033,
5.212658806999670000E+033, 1.042531761399934000E+034, 2.085063522799868000E+034, 4.170127045599736000E+034,
8.340254091199472000E+034, 1.668050818239894400E+035, 3.336101636479788800E+035, 6.672203272959577600E+035
};
// You can use this to double check the exponent table and assert that
// the precomputation is correct.
#ifdef DBGFLAG_ASSERT
#pragma warning(push)
#pragma warning( disable : 4189 ) // disable unused local variable warning
static void CheckExponentTable()
{
for( int i = 0; i < 256; i++ )
{
float testAgainst = pow( 2.0f, i - 128 ) / 255.0f;
float diff = testAgainst - power2_n[i] ;
float relativeDiff = diff / testAgainst;
Assert( testAgainst == 0 ?
power2_n[i] < 1.16E-041 :
power2_n[i] == testAgainst );
}
}
#pragma warning(pop)
#endif
void BuildGammaTable( float gamma, float texGamma, float brightness, int overbright )
{
int i, inf;
float g1, g3;
// Con_Printf("BuildGammaTable %.1f %.1f %.1f\n", g, v_lightgamma.GetFloat(), v_texgamma.GetFloat() );
float g = gamma;
if (g > 3.0)
{
g = 3.0;
}
g = 1.0 / g;
g1 = texGamma * g;
if (brightness <= 0.0)
{
g3 = 0.125;
}
else if (brightness > 1.0)
{
g3 = 0.05;
}
else
{
g3 = 0.125 - (brightness * brightness) * 0.075;
}
for (i=0 ; i<256 ; i++)
{
inf = 255 * pow ( i/255.f, g1 );
if (inf < 0)
inf = 0;
if (inf > 255)
inf = 255;
texgammatable[i] = inf;
}
for (i=0 ; i<1024 ; i++)
{
float f;
f = i / 1023.0;
// scale up
if (brightness > 1.0)
f = f * brightness;
// shift up
if (f <= g3)
f = (f / g3) * 0.125;
else
f = 0.125 + ((f - g3) / (1.0 - g3)) * 0.875;
// convert linear space to desired gamma space
inf = 255 * pow ( f, g );
if (inf < 0)
inf = 0;
if (inf > 255)
inf = 255;
lineartoscreen[i] = inf;
}
/*
for (i=0 ; i<1024 ; i++)
{
// convert from screen gamma space to linear space
lineargammatable[i] = 1023 * pow ( i/1023.0, v_gamma.GetFloat() );
// convert from linear gamma space to screen space
screengammatable[i] = 1023 * pow ( i/1023.0, 1.0 / v_gamma.GetFloat() );
}
*/
for (i=0 ; i<256 ; i++)
{
// convert from nonlinear texture space (0..255) to linear space (0..1)
texturetolinear[i] = pow( i / 255.f, texGamma );
// convert from linear space (0..1) to nonlinear (sRGB) space (0..1)
g_Mathlib_LinearToGamma[i] = LinearToGammaFullRange( i / 255.f );
// convert from sRGB gamma space (0..1) to linear space (0..1)
g_Mathlib_GammaToLinear[i] = GammaToLinearFullRange( i / 255.f );
}
for (i=0 ; i<1024 ; i++)
{
// convert from linear space (0..1) to nonlinear texture space (0..255)
lineartotexture[i] = pow( i / 1023.0, 1.0 / texGamma ) * 255;
}
#if 0
for (i=0 ; i<256 ; i++)
{
float f;
// convert from nonlinear lightmap space (0..255) to linear space (0..4)
// f = (i / 255.0) * sqrt( 4 );
f = i * (2.0 / 255.0);
f = f * f;
texlighttolinear[i] = f;
}
#endif
{
float f;
float overbrightFactor = 1.0f;
// Can't do overbright without texcombine
// UNDONE: Add GAMMA ramp to rectify this
if ( overbright == 2 )
{
overbrightFactor = 0.5;
}
else if ( overbright == 4 )
{
overbrightFactor = 0.25;
}
for (i=0 ; i<4096 ; i++)
{
// convert from linear 0..4 (x1024) to screen corrected vertex space (0..1?)
f = pow ( i/1024.0, 1.0 / gamma );
lineartovertex[i] = f * overbrightFactor;
if (lineartovertex[i] > 1)
lineartovertex[i] = 1;
int nLightmap = RoundFloatToInt( f * 255 * overbrightFactor );
nLightmap = clamp( nLightmap, 0, 255 );
lineartolightmap[i] = (unsigned char)nLightmap;
}
}
}
float GammaToLinearFullRange( float gamma )
{
return pow( gamma, 2.2f );
}
float LinearToGammaFullRange( float linear )
{
return pow( linear, 1.0f / 2.2f );
}
float GammaToLinear( float gamma )
{
Assert( s_bMathlibInitialized );
if ( gamma < 0.0f )
{
return 0.0f;
}
if ( gamma >= 0.95f )
{
// Use GammaToLinearFullRange maybe if you trip this.
// X360TEMP
// Assert( gamma <= 1.0f );
return 1.0f;
}
int index = RoundFloatToInt( gamma * 255.0f );
Assert( index >= 0 && index < 256 );
return g_Mathlib_GammaToLinear[index];
}
float LinearToGamma( float linear )
{
Assert( s_bMathlibInitialized );
if ( linear < 0.0f )
{
return 0.0f;
}
if ( linear > 1.0f )
{
// Use LinearToGammaFullRange maybe if you trip this.
Assert( 0 );
return 1.0f;
}
int index = RoundFloatToInt( linear * 255.0f );
Assert( index >= 0 && index < 256 );
return g_Mathlib_LinearToGamma[index];
}
//-----------------------------------------------------------------------------
// Helper functions to convert between sRGB and 360 gamma space
//-----------------------------------------------------------------------------
float SrgbGammaToLinear( float flSrgbGammaValue )
{
float x = clamp( flSrgbGammaValue, 0.0f, 1.0f );
return ( x <= 0.04045f ) ? ( x / 12.92f ) : ( pow( ( x + 0.055f ) / 1.055f, 2.4f ) );
}
float SrgbLinearToGamma( float flLinearValue )
{
float x = clamp( flLinearValue, 0.0f, 1.0f );
return ( x <= 0.0031308f ) ? ( x * 12.92f ) : ( 1.055f * pow( x, ( 1.0f / 2.4f ) ) ) - 0.055f;
}
float X360GammaToLinear( float fl360GammaValue )
{
float flLinearValue;
fl360GammaValue = clamp( fl360GammaValue, 0.0f, 1.0f );
if ( fl360GammaValue < ( 96.0f / 255.0f ) )
{
if ( fl360GammaValue < ( 64.0f / 255.0f ) )
{
flLinearValue = fl360GammaValue * 255.0f;
}
else
{
flLinearValue = fl360GammaValue * ( 255.0f * 2.0f ) - 64.0f;
flLinearValue += floor( flLinearValue * ( 1.0f / 512.0f ) );
}
}
else
{
if( fl360GammaValue < ( 192.0f / 255.0f ) )
{
flLinearValue = fl360GammaValue * ( 255.0f * 4.0f ) - 256.0f;
flLinearValue += floor( flLinearValue * ( 1.0f / 256.0f ) );
}
else
{
flLinearValue = fl360GammaValue * ( 255.0f * 8.0f ) - 1024.0f;
flLinearValue += floor( flLinearValue * ( 1.0f / 128.0f ) );
}
}
flLinearValue *= 1.0f / 1023.0f;
flLinearValue = clamp( flLinearValue, 0.0f, 1.0f );
return flLinearValue;
}
float X360LinearToGamma( float flLinearValue )
{
float fl360GammaValue;
flLinearValue = clamp( flLinearValue, 0.0f, 1.0f );
if ( flLinearValue < ( 128.0f / 1023.0f ) )
{
if ( flLinearValue < ( 64.0f / 1023.0f ) )
{
fl360GammaValue = flLinearValue * ( 1023.0f * ( 1.0f / 255.0f ) );
}
else
{
fl360GammaValue = flLinearValue * ( ( 1023.0f / 2.0f ) * ( 1.0f / 255.0f ) ) + ( 32.0f / 255.0f );
}
}
else
{
if ( flLinearValue < ( 512.0f / 1023.0f ) )
{
fl360GammaValue = flLinearValue * ( ( 1023.0f / 4.0f ) * ( 1.0f / 255.0f ) ) + ( 64.0f / 255.0f );
}
else
{
fl360GammaValue = flLinearValue * ( ( 1023.0f /8.0f ) * ( 1.0f / 255.0f ) ) + ( 128.0f /255.0f ); // 1.0 -> 1.0034313725490196078431372549016
if ( fl360GammaValue > 1.0f )
{
fl360GammaValue = 1.0f;
}
}
}
fl360GammaValue = clamp( fl360GammaValue, 0.0f, 1.0f );
return fl360GammaValue;
}
float SrgbGammaTo360Gamma( float flSrgbGammaValue )
{
float flLinearValue = SrgbGammaToLinear( flSrgbGammaValue );
float fl360GammaValue = X360LinearToGamma( flLinearValue );
return fl360GammaValue;
}
// convert texture to linear 0..1 value
float TextureToLinear( int c )
{
Assert( s_bMathlibInitialized );
if (c < 0)
return 0;
if (c > 255)
return 1.0;
return texturetolinear[c];
}
// convert texture to linear 0..1 value
int LinearToTexture( float f )
{
Assert( s_bMathlibInitialized );
int i;
i = f * 1023; // assume 0..1 range
if (i < 0)
i = 0;
if (i > 1023)
i = 1023;
return lineartotexture[i];
}
// converts 0..1 linear value to screen gamma (0..255)
int LinearToScreenGamma( float f )
{
Assert( s_bMathlibInitialized );
int i;
i = f * 1023; // assume 0..1 range
if (i < 0)
i = 0;
if (i > 1023)
i = 1023;
return lineartoscreen[i];
}
void ColorRGBExp32ToVector( const ColorRGBExp32& in, Vector& out )
{
Assert( s_bMathlibInitialized );
// FIXME: Why is there a factor of 255 built into this?
out.x = 255.0f * TexLightToLinear( in.r, in.exponent );
out.y = 255.0f * TexLightToLinear( in.g, in.exponent );
out.z = 255.0f * TexLightToLinear( in.b, in.exponent );
}
#if 0
// assumes that the desired mantissa range is 128..255
static int VectorToColorRGBExp32_CalcExponent( float in )
{
int power = 0;
if( in != 0.0f )
{
while( in > 255.0f )
{
power += 1;
in *= 0.5f;
}
while( in < 128.0f )
{
power -= 1;
in *= 2.0f;
}
}
return power;
}
void VectorToColorRGBExp32( const Vector& vin, ColorRGBExp32 &c )
{
Vector v = vin;
Assert( s_bMathlibInitialized );
Assert( v.x >= 0.0f && v.y >= 0.0f && v.z >= 0.0f );
int i;
float max = v[0];
for( i = 1; i < 3; i++ )
{
// Get the maximum value.
if( v[i] > max )
{
max = v[i];
}
}
// figure out the exponent for this luxel.
int exponent = VectorToColorRGBExp32_CalcExponent( max );
// make the exponent fits into a signed byte.
if( exponent < -128 )
{
exponent = -128;
}
else if( exponent > 127 )
{
exponent = 127;
}
// undone: optimize with a table
float scalar = pow( 2.0f, -exponent );
// convert to mantissa x 2^exponent format
for( i = 0; i < 3; i++ )
{
v[i] *= scalar;
// clamp
if( v[i] > 255.0f )
{
v[i] = 255.0f;
}
}
c.r = ( unsigned char )v[0];
c.g = ( unsigned char )v[1];
c.b = ( unsigned char )v[2];
c.exponent = ( signed char )exponent;
}
#else
// given a floating point number f, return an exponent e such that
// for f' = f * 2^e, f is on [128..255].
// Uses IEEE 754 representation to directly extract this information
// from the float.
inline static int VectorToColorRGBExp32_CalcExponent( const float *pin )
{
// The thing we will take advantage of here is that the exponent component
// is stored in the float itself, and because we want to map to 128..255, we
// want an "ideal" exponent of 2^7. So, we compute the difference between the
// input exponent and 7 to work out the normalizing exponent. Thus if you pass in
// 32 (represented in IEEE 754 as 2^5), this function will return 2
// (because 32 * 2^2 = 128)
if (*pin == 0.0f)
return 0;
unsigned int fbits = *reinterpret_cast<const unsigned int *>(pin);
// the exponent component is bits 23..30, and biased by +127
const unsigned int biasedSeven = 7 + 127;
signed int expComponent = ( fbits & 0x7F800000 ) >> 23;
expComponent -= biasedSeven; // now the difference from seven (positive if was less than, etc)
return expComponent;
}
/// Slightly faster version of the function to turn a float-vector color into
/// a compressed-exponent notation 32bit color. However, still not SIMD optimized.
/// PS3 developer: note there is a movement of a float onto an int here, which is
/// bad on the base registers -- consider doing this as Altivec code, or better yet
/// moving it onto the cell.
/// \warning: Assumes an IEEE 754 single-precision float representation! Those of you
/// porting to an 8080 are out of luck.
void VectorToColorRGBExp32( const Vector& vin, ColorRGBExp32 &c )
{
Assert( s_bMathlibInitialized );
Assert( vin.x >= 0.0f && vin.y >= 0.0f && vin.z >= 0.0f );
// work out which of the channels is the largest ( we will use that to map the exponent )
// this is a sluggish branch-based decision tree -- most architectures will offer a [max]
// assembly opcode to do this faster.
const float *pMax;
if (vin.x > vin.y)
{
if (vin.x > vin.z)
{
pMax = &vin.x;
}
else
{
pMax = &vin.z;
}
}
else
{
if (vin.y > vin.z)
{
pMax = &vin.y;
}
else
{
pMax = &vin.z;
}
}
// now work out the exponent for this luxel.
signed int exponent = VectorToColorRGBExp32_CalcExponent( pMax );
// make sure the exponent fits into a signed byte.
// (in single precision format this is assured because it was a signed byte to begin with)
Assert(exponent > -128 && exponent <= 127);
// promote the exponent back onto a scalar that we'll use to normalize all the numbers
float scalar;
{
unsigned int fbits = (127 - exponent) << 23;
scalar = *reinterpret_cast<float *>(&fbits);
}
// We can totally wind up above 255 and that's okay--but above 256 would be right out.
Assert(vin.x * scalar < 256.0f &&
vin.y * scalar < 256.0f &&
vin.z * scalar < 256.0f);
// This awful construction is necessary to prevent VC2005 from using the
// fldcw/fnstcw control words around every float-to-unsigned-char operation.
{
int red = (vin.x * scalar);
int green = (vin.y * scalar);
int blue = (vin.z * scalar);
c.r = red;
c.g = green;
c.b = blue;
}
/*
c.r = ( unsigned char )(vin.x * scalar);
c.g = ( unsigned char )(vin.y * scalar);
c.b = ( unsigned char )(vin.z * scalar);
*/
c.exponent = ( signed char )exponent;
}
#endif