forked from cvondrick/soundnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_finetune.lua
170 lines (140 loc) · 5.24 KB
/
main_finetune.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
require 'torch'
require 'nn'
require 'optim'
require 'dpnn'
require 'cunn'
require 'cudnn'
-- to specify these at runtime, you can do, e.g.:
-- $ lr=0.001 th main.lua
opt = {
dataset = 'audio_simple', -- indicates what dataset load to use (in data.lua)
nThreads = 16, -- how many threads to pre-fetch data
batchSize = 256, -- self-explanatory
loadSize = 22050*5, -- when loading images, resize first to this size
fineSize = 22050*5, -- crop this size from the loaded image
lr = 0.001, -- learning rate
lambda = 250,
nClasses = 50,
beta1 = 0.9, -- momentum term for adam
meanIter = 0, -- how many iterations to retrieve for mean estimation
saveIter = 20, -- write check point on this interval
niter = 50, -- number of iterations through dataset
ntrain = math.huge, -- how big one epoch should be
gpu = 1, -- which GPU to use; consider using CUDA_VISIBLE_DEVICES instead
cudnn = 1, -- whether to use cudnn or not
finetune = 'models/soundnet8_final.t7',
name = 'soundnet_ft', -- the name of the experiment
randomize = 1, -- whether to shuffle the data file or not
display_port = 8001, -- port to push graphs
display_id = 1, -- window ID when pushing graphs
data_root = '/data/vision/torralba/crossmodal/soundnet/ESC-50',
data_list = '/data/vision/torralba/crossmodal/soundnet/ESC-50/splits/train1.txt',
}
-- one-line argument parser. parses enviroment variables to override the defaults
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
print(opt)
torch.manualSeed(0)
torch.setnumthreads(1)
torch.setdefaulttensortype('torch.FloatTensor')
-- if using GPU, select indicated one
if opt.gpu > 0 then
require 'cunn'
cutorch.setDevice(opt.gpu)
end
-- create data loader
local DataLoader = paths.dofile('data/data.lua')
local data = DataLoader.new(opt.nThreads, opt.dataset, opt)
print("Dataset: " .. opt.dataset, " Size: ", data:size())
-- define the model
print('loading ' .. opt.finetune)
local net = torch.load(opt.finetune)
print('modifying net')
for i=1,4 do net:remove(#net.modules) end
net:add(nn.SpatialConvolution(1024, opt.nClasses, 1,4, 1,1, 0,0))
net:add(nn.View(opt.nClasses):setNumInputDims(3))
print(net)
-- define the loss
local criterion = nn.CrossEntropyCriterion()
-- create the data placeholders
local input = torch.Tensor(opt.batchSize, 1, opt.fineSize, 1)
local labels = torch.Tensor(opt.batchSize)
local err
-- timers to roughly profile performance
local tm = torch.Timer()
local data_tm = torch.Timer()
-- ship everything to GPU if needed
if opt.gpu > 0 then
input = input:cuda()
labels = labels:cuda()
net:cuda()
criterion:cuda()
end
-- conver to cudnn if needed
-- if this errors on you, you can disable, but will be slightly slower
if opt.gpu > 0 and opt.cudnn > 0 then
net = cudnn.convert(net, cudnn)
end
-- get a vector of parameters
local parameters, gradParameters = net:getParameters()
-- show graphics
disp = require 'display'
disp.url = 'http://localhost:' .. opt.display_port .. '/events'
-- optimization closure
-- the optimizer will call this function to get the gradients
local data_im,data_label,data_extra
local fx = function(x)
gradParameters:zero()
-- fetch data
data_tm:reset(); data_tm:resume()
data_im,data_label = data:getBatch()
data_tm:stop()
-- ship data to GPU
input:copy(data_im:view(opt.batchSize, 1, opt.fineSize, 1))
labels:copy(data_label)
-- forward, backwards
local output = net:forward(input)
err = criterion:forward(output, labels)
local df_do = criterion:backward(output, labels)
net:backward(input, df_do)
-- return gradients
return err, gradParameters
end
local counter = 0
local history = {}
-- parameters for the optimization
-- very important: you must only create this table once!
-- the optimizer will add fields to this table (such as momentum)
local optimState = {
learningRate = opt.lr,
beta1 = opt.beta1,
}
-- train main loop
for epoch = 1,opt.niter do -- for each epoch
for i = 1, math.min(data:size(), opt.ntrain), opt.batchSize do -- for each mini-batch
collectgarbage() -- necessary sometimes
tm:reset()
-- do one iteration
optim.adam(fx, parameters, optimState)
-- logging
if counter % 10 == 0 then
table.insert(history, {counter, err})
disp.plot(history, {win=opt.display_id+1, title=opt.name, labels = {"iteration", "err"}})
end
counter = counter + 1
print(('%s: Iteration: [%d]\t Time: %.3f DataTime: %.3f '
.. ' Err: %.4f'):format(
opt.name, counter,
tm:time().real, data_tm:time().real,
err and err or -1))
-- save checkpoint
-- :clearState() compacts the model so it takes less space on disk
if counter % opt.saveIter == 0 then
print('Saving ' .. opt.name .. '/iter' .. counter .. '_net.t7')
paths.mkdir('checkpoints')
paths.mkdir('checkpoints/' .. opt.name)
torch.save('checkpoints/' .. opt.name .. '/iter' .. counter .. '_net.t7', net:clearState())
--torch.save('checkpoints/' .. opt.name .. '/iter' .. counter .. '_optim.t7', optimState)
torch.save('checkpoints/' .. opt.name .. '/iter' .. counter .. '_history.t7', history)
end
end
end