-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodint.cpp
145 lines (128 loc) · 3.16 KB
/
modint.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#include <iostream>
#include <sstream>
#include <algorithm>
#include <vector>
#include <numeric>
#include <cmath>
#include <cassert>
using namespace std;
typedef long double LD;
const int64_t MOD = 1000000007;
const LD EPS = 1e-10;
static const size_t TABLE_SIZE = 1000000; // 1e6
struct modint {
int64_t x;
modint() { }
modint(int _x) : x(_x) { }
operator int() const { return (int)x; }
modint operator+(int y) { return (x + y + MOD) % MOD; }
modint operator+=(int y) { x = (x + y + MOD) % MOD; return *this; }
modint operator-(int y) { return (x - y + MOD) % MOD; }
modint operator-=(int y) { x = (x - y + MOD) % MOD; return *this; }
modint operator*(int y) { return (x * y) % MOD; }
modint operator*=(int y) { x = (x * y) % MOD; return *this; }
modint operator/(int y) { return (x * modpow(y, MOD - 2)) % MOD; }
modint operator/=(int y) { x = (x * modpow(y, MOD - 2)) % MOD; return *this; }
static modint modinv(int a) { return modpow(a, MOD - 2); }
static modint modpow(int a, int b) {
modint x = a, r = 1;
for (; b > 0; b >>= 1, x *= x) if (b & 1) r *= x;
return r;
}
static modint permutation(int n, int r);
static modint combination(int n, int r);
static modint nHr(int n, int r);
};
static vector<modint> fact(TABLE_SIZE + 1, 0), inv(TABLE_SIZE + 1, 0);
static __inline void build_fact_table() {
if (!fact[0]) {
fact[0] = 1;
for (int i = 1; i <= TABLE_SIZE; ++i) {
fact[i] = fact[i - 1] * i;
}
inv[TABLE_SIZE] = modint::modinv(fact[TABLE_SIZE]);
for (int i = TABLE_SIZE; i >= 1; --i) {
inv[i - 1] = inv[i] * i;
}
}
}
modint modint::permutation(int n, int r) {
if (r > n) return 0;
build_fact_table();
return fact[n] * inv[n - r];
}
modint modint::combination(int n, int r) {
if (r > n) return 0;
build_fact_table();
return (fact[n] * inv[r]) * inv[n - r];
}
// 重複組合せ
modint modint::nHr(int n, int r) {
return combination(n + r - 1, r);
}
modint combination_slow(int n, int r) {
if (r > n) return 0;
r = min(r, n - r);
if (r == 0) return 1;
if (r == 1) return n;
if (r == 2) return (((long long)n * (n - 1)) / 2) % MOD;
modint a = 1, b = 1;
for (int i = 0; i < r; ++i) {
a *= n - i;
b *= i + 1;
}
return a * modint::modinv(b);
}
struct Matrix {
size_t size;
vector<vector<modint>> e;
Matrix(size_t size_) {
size = size_;
e = vector<vector<modint>>(size, vector<modint>(size, 0));
}
void setIdentity() {
for (size_t i = 0; i < size; ++i) {
e[i][i] = 1;
}
}
Matrix mul(const Matrix& a) {
Matrix r(size);
for (size_t i = 0; i < size; ++i) {
for (size_t j = 0; j < size; ++j) {
for (size_t k = 0; k < size; ++k) {
r.e[i][j] += e[i][k] * a.e[k][j];
}
}
}
return r;
}
Matrix pow(int64_t x) {
Matrix r(size), b = *this;
r.setIdentity();
for (; x > 0; x >>= 1) {
if (x & 1) {
r = r.mul(b);
}
b = b.mul(b);
}
return r;
}
};
int main(int argc, char* argv[]) {
modint x = 100;
vector<int> r;
for (int i = 0; i < 100; ++i) {
r.push_back(rand() + 2);
x *= r.back();
}
for (int a : r) {
x /= a;
}
assert(x == 100);
for (int a = 0; a <= 100; ++a) {
for (int b = 0; b <= 100; ++b) {
assert(modint::combination(a, b) == combination_slow(a, b));
}
}
return 0;
}