forked from davisking/dlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dnn_introduction2_ex.cpp
379 lines (326 loc) · 18.1 KB
/
dnn_introduction2_ex.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use of the deep learning tools from the
dlib C++ Library. I'm assuming you have already read the dnn_introduction_ex.cpp
example. So in this example program I'm going to go over a number of more
advanced parts of the API, including:
- Using multiple GPUs
- Training on large datasets that don't fit in memory
- Defining large networks
- Accessing and configuring layers in a network
*/
#include <dlib/dnn.h>
#include <iostream>
#include <dlib/data_io.h>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
// Let's start by showing how you can conveniently define large and complex
// networks. The most important tool for doing this are C++'s alias templates.
// These let us define new layer types that are combinations of a bunch of other
// layers. These will form the building blocks for more complex networks.
// So let's begin by defining the building block of a residual network (see
// Figure 2 in Deep Residual Learning for Image Recognition by He, Zhang, Ren,
// and Sun). We are going to decompose the residual block into a few alias
// statements. First, we define the core block.
// Here we have parameterized the "block" layer on a BN layer (nominally some
// kind of batch normalization), the number of filter outputs N, and the stride
// the block operates at.
template <
int N,
template <typename> class BN,
int stride,
typename SUBNET
>
using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
// Next, we need to define the skip layer mechanism used in the residual network
// paper. They create their blocks by adding the input tensor to the output of
// each block. So we define an alias statement that takes a block and wraps it
// with this skip/add structure.
// Note the tag layer. This layer doesn't do any computation. It exists solely
// so other layers can refer to it. In this case, the add_prev1 layer looks for
// the tag1 layer and will take the tag1 output and add it to the input of the
// add_prev1 layer. This combination allows us to implement skip and residual
// style networks. We have also set the block stride to 1 in this statement.
// The significance of that is explained next.
template <
template <int,template<typename>class,int,typename> class block,
int N,
template<typename>class BN,
typename SUBNET
>
using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
// Some residual blocks do downsampling. They do this by using a stride of 2
// instead of 1. However, when downsampling we need to also take care to
// downsample the part of the network that adds the original input to the output
// or the sizes won't make sense (the network will still run, but the results
// aren't as good). So here we define a downsampling version of residual. In
// it, we make use of the skip1 layer. This layer simply outputs whatever is
// output by the tag1 layer. Therefore, the skip1 layer (there are also skip2,
// skip3, etc. in dlib) allows you to create branching network structures.
// residual_down creates a network structure like this:
/*
input from SUBNET
/ \
/ \
block downsample(using avg_pool)
\ /
\ /
add tensors (using add_prev2 which adds the output of tag2 with avg_pool's output)
|
output
*/
template <
template <int,template<typename>class,int,typename> class block,
int N,
template<typename>class BN,
typename SUBNET
>
using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
// Now we can define 4 different residual blocks we will use in this example.
// The first two are non-downsampling residual blocks while the last two
// downsample. Also, res and res_down use batch normalization while ares and
// ares_down have had the batch normalization replaced with simple affine
// layers. We will use the affine version of the layers when testing our
// networks.
template <typename SUBNET> using res = relu<residual<block,8,bn_con,SUBNET>>;
template <typename SUBNET> using ares = relu<residual<block,8,affine,SUBNET>>;
template <typename SUBNET> using res_down = relu<residual_down<block,8,bn_con,SUBNET>>;
template <typename SUBNET> using ares_down = relu<residual_down<block,8,affine,SUBNET>>;
// Now that we have these convenient aliases, we can define a residual network
// without a lot of typing. Note the use of a repeat layer. This special layer
// type allows us to type repeat<9,res<SUBNET>> instead of
// res<res<res<res<res<res<res<res<res<SUBNET>>>>>>>>>. It will also prevent
// the compiler from complaining about super deep template nesting when creating
// large networks.
const unsigned long number_of_classes = 10;
using net_type = loss_multiclass_log<fc<number_of_classes,
avg_pool_everything<
res<res<res<res_down<
repeat<9,res, // repeat this layer 9 times
res_down<
res<
input<matrix<unsigned char>>
>>>>>>>>>>;
// And finally, let's define a residual network building block that uses
// parametric ReLU units instead of regular ReLU.
template <typename SUBNET>
using pres = prelu<add_prev1<bn_con<con<8,3,3,1,1,prelu<bn_con<con<8,3,3,1,1,tag1<SUBNET>>>>>>>>;
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv) try
{
if (argc != 2)
{
cout << "This example needs the MNIST dataset to run!" << endl;
cout << "You can get MNIST from http://yann.lecun.com/exdb/mnist/" << endl;
cout << "Download the 4 files that comprise the dataset, decompress them, and" << endl;
cout << "put them in a folder. Then give that folder as input to this program." << endl;
return 1;
}
std::vector<matrix<unsigned char>> training_images;
std::vector<unsigned long> training_labels;
std::vector<matrix<unsigned char>> testing_images;
std::vector<unsigned long> testing_labels;
load_mnist_dataset(argv[1], training_images, training_labels, testing_images, testing_labels);
// dlib uses cuDNN under the covers. One of the features of cuDNN is the
// option to use slower methods that use less RAM or faster methods that use
// a lot of RAM. If you find that you run out of RAM on your graphics card
// then you can call this function and we will request the slower but more
// RAM frugal cuDNN algorithms.
set_dnn_prefer_smallest_algorithms();
// Create a network as defined above. This network will produce 10 outputs
// because that's how we defined net_type. However, fc layers can have the
// number of outputs they produce changed at runtime.
net_type net;
// So if you wanted to use the same network but override the number of
// outputs at runtime you can do so like this:
net_type net2(num_fc_outputs(15));
// Now, let's imagine we wanted to replace some of the relu layers with
// prelu layers. We might do it like this:
using net_type2 = loss_multiclass_log<fc<number_of_classes,
avg_pool_everything<
pres<res<res<res_down< // 2 prelu layers here
tag4<repeat<9,pres, // 9 groups, each containing 2 prelu layers
res_down<
res<
input<matrix<unsigned char>>
>>>>>>>>>>>;
// prelu layers have a floating point parameter. If you want to set it to
// something other than its default value you can do so like this:
net_type2 pnet(prelu_(0.2),
prelu_(0.25),
repeat_group(prelu_(0.3),prelu_(0.4)) // Initialize all the prelu instances in the repeat
// layer. repeat_group() is needed to group the
// things that are part of repeat's block.
);
// As you can see, a network will greedily assign things given to its
// constructor to the layers inside itself. The assignment is done in the
// order the layers are defined, but it will skip layers where the
// assignment doesn't make sense.
// Now let's print the details of the pnet to the screen and inspect it.
cout << "The pnet has " << pnet.num_layers << " layers in it." << endl;
cout << pnet << endl;
// These print statements will output this (I've truncated it since it's
// long, but you get the idea):
/*
The pnet has 131 layers in it.
layer<0> loss_multiclass_log
layer<1> fc (num_outputs=10) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<2> avg_pool (nr=0, nc=0, stride_y=1, stride_x=1, padding_y=0, padding_x=0)
layer<3> prelu (initial_param_value=0.2)
layer<4> add_prev1
layer<5> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
layer<6> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<7> prelu (initial_param_value=0.25)
layer<8> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
layer<9> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<10> tag1
...
layer<34> relu
layer<35> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
layer<36> con (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<37> tag1
layer<38> tag4
layer<39> prelu (initial_param_value=0.3)
layer<40> add_prev1
layer<41> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
...
layer<118> relu
layer<119> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
layer<120> con (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<121> tag1
layer<122> relu
layer<123> add_prev1
layer<124> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
layer<125> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<126> relu
layer<127> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
layer<128> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<129> tag1
layer<130> input<matrix>
*/
// Now that we know the index numbers for each layer, we can access them
// individually using layer<index>(pnet). For example, to access the output
// tensor for the first prelu layer we can say:
layer<3>(pnet).get_output();
// Or to print the prelu parameter for layer 7 we can say:
cout << "prelu param: "<< layer<7>(pnet).layer_details().get_initial_param_value() << endl;
// We can also access layers by their type. This next statement finds the
// first tag1 layer in pnet, and is therefore equivalent to calling
// layer<10>(pnet):
layer<tag1>(pnet);
// The tag layers don't do anything at all and exist simply so you can tag
// parts of your network and access them by layer<tag>(). You can also
// index relative to a tag. So for example, to access the layer immediately
// after tag4 you can say:
layer<tag4,1>(pnet); // Equivalent to layer<38+1>(pnet).
// Or to access the layer 2 layers after tag4:
layer<tag4,2>(pnet);
// Tagging is a very useful tool for making complex network structures. For
// example, the add_prev1 layer is implemented internally by using a call to
// layer<tag1>().
// Ok, that's enough talk about defining and inspecting networks. Let's
// talk about training networks!
// The dnn_trainer will use SGD by default, but you can tell it to use
// different solvers like adam with a weight decay of 0.0005 and the given
// momentum parameters.
dnn_trainer<net_type,adam> trainer(net,adam(0.0005, 0.9, 0.999));
// Also, if you have multiple graphics cards you can tell the trainer to use
// them together to make the training faster. For example, replacing the
// above constructor call with this one would cause it to use GPU cards 0
// and 1.
//dnn_trainer<net_type,adam> trainer(net,adam(0.0005, 0.9, 0.999), {0,1});
trainer.be_verbose();
trainer.set_synchronization_file("mnist_resnet_sync", std::chrono::seconds(100));
// While the trainer is running it keeps an eye on the training error. If
// it looks like the error hasn't decreased for the last 2000 iterations it
// will automatically reduce the learning rate by 0.1. You can change these
// default parameters to some other values by calling these functions. Or
// disable the automatic shrinking entirely by setting the shrink factor to 1.
trainer.set_iterations_without_progress_threshold(2000);
trainer.set_learning_rate_shrink_factor(0.1);
// The learning rate will start at 1e-3.
trainer.set_learning_rate(1e-3);
// Now, what if your training dataset is so big it doesn't fit in RAM? You
// make mini-batches yourself, any way you like, and you send them to the
// trainer by repeatedly calling trainer.train_one_step().
//
// For example, the loop below stream MNIST data to out trainer.
std::vector<matrix<unsigned char>> mini_batch_samples;
std::vector<unsigned long> mini_batch_labels;
dlib::rand rnd(time(0));
// Loop until the trainer's automatic shrinking has shrunk the learning rate to 1e-6.
// Given our settings, this means it will stop training after it has shrunk the
// learning rate 3 times.
while(trainer.get_learning_rate() >= 1e-6)
{
mini_batch_samples.clear();
mini_batch_labels.clear();
// make a 128 image mini-batch
while(mini_batch_samples.size() < 128)
{
auto idx = rnd.get_random_32bit_number()%training_images.size();
mini_batch_samples.push_back(training_images[idx]);
mini_batch_labels.push_back(training_labels[idx]);
}
trainer.train_one_step(mini_batch_samples, mini_batch_labels);
}
// When you call train_one_step(), the trainer will do its processing in a
// separate thread. This allows the main thread to work on loading data
// while the trainer is busy executing the mini-batches in parallel.
// However, this also means we need to wait for any mini-batches that are
// still executing to stop before we mess with the net object. Calling
// get_net() performs the necessary synchronization.
trainer.get_net();
net.clean();
serialize("mnist_res_network.dat") << net;
// Now we have a trained network. However, it has batch normalization
// layers in it. As is customary, we should replace these with simple
// affine layers before we use the network. This can be accomplished by
// making a network type which is identical to net_type but with the batch
// normalization layers replaced with affine. For example:
using test_net_type = loss_multiclass_log<fc<number_of_classes,
avg_pool_everything<
ares<ares<ares<ares_down<
repeat<9,ares,
ares_down<
ares<
input<matrix<unsigned char>>
>>>>>>>>>>;
// Then we can simply assign our trained net to our testing net.
test_net_type tnet = net;
// Or if you only had a file with your trained network you could deserialize
// it directly into your testing network.
deserialize("mnist_res_network.dat") >> tnet;
// And finally, we can run the testing network over our data.
std::vector<unsigned long> predicted_labels = tnet(training_images);
int num_right = 0;
int num_wrong = 0;
for (size_t i = 0; i < training_images.size(); ++i)
{
if (predicted_labels[i] == training_labels[i])
++num_right;
else
++num_wrong;
}
cout << "training num_right: " << num_right << endl;
cout << "training num_wrong: " << num_wrong << endl;
cout << "training accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
predicted_labels = tnet(testing_images);
num_right = 0;
num_wrong = 0;
for (size_t i = 0; i < testing_images.size(); ++i)
{
if (predicted_labels[i] == testing_labels[i])
++num_right;
else
++num_wrong;
}
cout << "testing num_right: " << num_right << endl;
cout << "testing num_wrong: " << num_wrong << endl;
cout << "testing accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
}
catch(std::exception& e)
{
cout << e.what() << endl;
}