forked from Pyomo/pyomo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPath_Constraint.py
68 lines (55 loc) · 1.85 KB
/
Path_Constraint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# ___________________________________________________________________________
#
# Pyomo: Python Optimization Modeling Objects
# Copyright 2017 National Technology and Engineering Solutions of Sandia, LLC
# Under the terms of Contract DE-NA0003525 with National Technology and
# Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
# rights in this software.
# This software is distributed under the 3-clause BSD License.
# ___________________________________________________________________________
# Sample Problem 3: Inequality State Path Constraint
# (Ex 4 from Dynopt Guide)
#
# min x3(tf)
# s.t. X1_dot = X2 X1(0) = 0
# X2_dot = -X2+u X2(0) = -1
# X3_dot = X1^2+x2^2+0.005*u^2 X3(0) = 0
# X2-8*(t-0.5)^2+0.5 <= 0
# tf = 1
#
from pyomo.environ import *
from pyomo.dae import *
m = ConcreteModel()
m.tf = Param(initialize=1)
m.t = ContinuousSet(bounds=(0,m.tf))
m.u = Var(m.t, initialize=0)
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.dx1 = DerivativeVar(m.x1, wrt=m.t)
m.dx2 = DerivativeVar(m.x2, wrt=m.t)
m.dx3 = DerivativeVar(m.x3, wrt=m.t)
m.obj = Objective(expr=m.x3[m.tf])
def _x1dot(m, t):
if t == 0:
return Constraint.Skip
return m.dx1[t] == m.x2[t]
m.x1dotcon = Constraint(m.t, rule=_x1dot)
def _x2dot(m, t):
if t == 0:
return Constraint.Skip
return m.dx2[t] == -m.x2[t]+m.u[t]
m.x2dotcon = Constraint(m.t, rule=_x2dot)
def _x3dot(m, t):
if t == 0:
return Constraint.Skip
return m.dx3[t] == m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2
m.x3dotcon = Constraint(m.t, rule=_x3dot)
def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0
m.con = Constraint(m.t, rule=_con)
def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
m.init_conditions = ConstraintList(rule=_init)