forked from torch/cunn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LookupTable.cu
236 lines (199 loc) · 7.83 KB
/
LookupTable.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include "utils.h"
#include <thrust/device_ptr.h>
#include <thrust/execution_policy.h>
#include <thrust/iterator/constant_iterator.h>
#ifndef DIVUP
#define DIVUP(x, y) (((x) + (y) - 1) / (y))
#endif
const int WARP_SIZE = 32;
__device__ __forceinline__ bool warpHasCollision(int val) {
// Compare our value to the values stored in the next 16 lanes,
// wrapping around at 32. If any pair of values is the same than
// there is a collision in the warp.
bool dup = 0;
const int laneId = threadIdx.x % 32;
#if __CUDA_ARCH__ >= 300
#pragma unroll
for (int i = 1; i <= 16; i++) {
dup |= (__shfl(val, (laneId + i) % 32) == val);
}
#else
volatile __shared__ int values[128];
values[threadIdx.x] = val;
const int offset = threadIdx.x - laneId;
#pragma unroll
for (int i = 1; i <= 16; i++) {
dup |= (values[offset + ((laneId + i) % 32)] == val);
}
#endif
return __any(dup) != 0;
}
__global__ void cunn_LookupTable_accGradParametersKernelByFeature(
float *input, float *gradOutput, float *gradWeight, float scale, long numel, long stride) {
const int featureDim = blockIdx.x * 4 + threadIdx.x / 32;
if (featureDim >= stride) {
return;
}
// The strategy here is that each warp handles a single feature
// dimension.
// Within that feature dimension, points in the [batch][element]
// dimension can overlap, and we need to determine if threads want
// to add to the gradient in a colliding manner.
// Typically one would use floating-point atomicAdd() to resolve
// these collisions, but that is non-deterministic if there are
// collisions. Non-determinism for this code is really bad,
// especially in RNNs, and is prone to snowballing error.
// In order to get a deterministic order of execution, we handle
// non-colliding updates separately from colliding ones. Colliding
// updates are serialized in their order of execution by using the
// warp-wide collision detector `warpHasCollision`.
const int laneId = threadIdx.x % 32;
for (int i = laneId; i < numel; i += WARP_SIZE) {
int weightIndex = (int) (input[i] - 1);
float update = gradOutput[i*stride + featureDim] * scale;
// Check for collision
if (warpHasCollision(weightIndex)) {
// Run all lanes sequentially; warp divergence
for (int i = 0; i < WARP_SIZE; ++i) {
if (laneId == i) {
gradWeight[weightIndex*stride + featureDim] += update;
}
}
} else {
// No collision; warp coherence
gradWeight[weightIndex*stride + featureDim] += update;
}
}
}
__global__ void cunn_LookupTable_accGradParametersKernel(
float *input, float *indices, float *gradOutput, float *gradWeight, float *count, float defaultScale, long numel, long stride) {
int idx = blockIdx.x * 4 + threadIdx.y;
// Each warp is responsible for an input into the LookupTable.
// If the preceeding input has the same as this input, then the warp
// exits immediately. The warp also processes subsequent inputs with the
// same value.
//
// Input Warp
// 1 <warp 1>
// 1 <warp 1> (<warp 2> exits without doing any work)
// 5 <warp 3>
// 8 <warp 4>
if (idx < numel && (idx == 0 || input[idx] != input[idx - 1])) {
do {
const int startFeature = threadIdx.x + blockIdx.y * blockDim.x;
const int weightRow = ((int) input[idx] - 1) * stride;
const int gradOutputRow = ((int) indices[idx] - 1) * stride;
const float scale = count ? defaultScale / count[idx] : defaultScale;
const int SZ = 4;
float gradient[SZ];
float weight[SZ];
#pragma unroll
for (int ii = 0; ii < SZ; ii++) {
int featureDim = startFeature + ii * WARP_SIZE;
if (featureDim < stride) {
gradient[ii] = gradOutput[gradOutputRow + featureDim];
weight[ii] = gradWeight[weightRow + featureDim];
}
}
#pragma unroll
for (int ii = 0; ii < SZ; ii++) {
weight[ii] += gradient[ii] * scale;
}
#pragma unroll
for (int ii = 0; ii < SZ; ii++) {
int featureDim = startFeature + ii * WARP_SIZE;
if (featureDim < stride) {
gradWeight[weightRow + featureDim] = weight[ii];
}
}
idx++;
} while (idx < numel && input[idx] == input[idx - 1]);
}
}
static int cunn_LookupTable_accGradParameters(lua_State *L)
{
THCState* state = getCutorchState(L);
THCudaTensor *input = (THCudaTensor*) luaT_checkudata(L, 2, "torch.CudaTensor");
THCudaTensor *gradOutput = (THCudaTensor*) luaT_checkudata(L, 3, "torch.CudaTensor");
float scale = luaL_optnumber(L, 4, 1);
THCudaTensor *gradWeight = (THCudaTensor*) luaT_getfieldcheckudata(L, 1, "gradWeight", "torch.CudaTensor");
THCudaTensor *sorted = (THCudaTensor*) luaT_getfieldcheckudata(L, 1, "_sorted", "torch.CudaTensor");
THCudaTensor *indices = (THCudaTensor*) luaT_getfieldcheckudata(L, 1, "_indices", "torch.CudaTensor");
THCudaTensor *count = (THCudaTensor*) luaT_getfieldcheckudata(L, 1, "_count", "torch.CudaTensor");
bool scaleGradByFreq = luaT_getfieldcheckboolean(L, 1, "shouldScaleGradByFreq");
THAssert(THCudaTensor_checkGPU(state, 5, input, gradOutput, gradWeight, sorted, indices));
if (!(THCudaTensor_isContiguous(state, input) &&
THCudaTensor_isContiguous(state, gradOutput) &&
THCudaTensor_isContiguous(state, gradWeight))) {
luaL_error(L, "Tensors must be contiguous");
}
int nDim = THCudaTensor_nDimension(state, input);
if (nDim != 1 && nDim != 2)
luaL_error(L, "input must be a vector or matrix");
long numel = THCudaTensor_nElement(state, input);
long stride = gradWeight->stride[0];
cudaStream_t stream = THCState_getCurrentStream(state);
if (numel <= 768 && !scaleGradByFreq) {
cunn_LookupTable_accGradParametersKernelByFeature<<<DIVUP(stride,4), 128, 0, stream>>>(
THCudaTensor_data(state, input),
THCudaTensor_data(state, gradOutput),
THCudaTensor_data(state, gradWeight),
scale,
numel,
stride);
return 0;
}
THCudaTensor_resizeAs(state, sorted, input);
THCudaTensor_resizeAs(state, indices, input);
// Sort the inputs into sorted with the corresponding indices
THCudaTensor_sort(state, sorted, indices, input, 0, 0);
float *sorted_data = THCudaTensor_data(state, sorted);
float *indices_data = THCudaTensor_data(state, indices);
float *count_data = NULL;
if (scaleGradByFreq) {
THCudaTensor_resizeAs(state, count, input);
count_data = THCudaTensor_data(state, count);
thrust::device_ptr<float> sorted_ptr(sorted_data);
thrust::device_ptr<float> count_ptr(count_data);
// Compute an increasing sequence per unique item in sorted:
// sorted: 2 5 5 5 7 7 8 9 9
// count: 1 1 2 3 1 2 1 1 2
thrust::inclusive_scan_by_key(
sorted_ptr,
sorted_ptr + numel,
thrust::make_constant_iterator(1),
count_ptr);
// Take the maximum of each count per unique key in reverse:
// sorted: 2 5 5 5 7 7 8 9 9
// count: 1 3 3 3 2 2 1 2 2
thrust::inclusive_scan_by_key(
thrust::make_reverse_iterator(sorted_ptr + numel),
thrust::make_reverse_iterator(sorted_ptr),
thrust::make_reverse_iterator(count_ptr + numel),
thrust::make_reverse_iterator(count_ptr + numel),
thrust::equal_to<float>(),
thrust::maximum<float>());
}
dim3 grid(DIVUP(numel,4), DIVUP(stride,128));
dim3 block(32, 4);
cunn_LookupTable_accGradParametersKernel<<<grid, block, 0, stream>>>(
sorted_data,
indices_data,
THCudaTensor_data(state, gradOutput),
THCudaTensor_data(state, gradWeight),
count_data,
scale,
numel,
stride);
return 0;
}
static const struct luaL_Reg cunn_LookupTable__ [] = {
{"LookupTable_accGradParameters", cunn_LookupTable_accGradParameters},
{NULL, NULL}
};
static void cunn_LookupTable_init(lua_State *L)
{
luaT_pushmetatable(L, "torch.CudaTensor");
luaT_registeratname(L, cunn_LookupTable__, "nn");
lua_pop(L,1);
}