forked from renmengye/rec-attend-public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfull_model_eval.py
executable file
·222 lines (192 loc) · 6.94 KB
/
full_model_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python
"""Run evaluation."""
from __future__ import division
import cv2
import numpy as np
import os
from utils import logger
from utils import postprocess as pp
from cmd_args_parser import DataArgsParser, EvalArgsParser
from experiment import EvalExperimentBase
from analysis import (f_iou_pairwise, create_analyzer, RenderInstanceAnalyzer,
RenderGroundtruthInstanceAnalyzer, CountAnalyzer)
from evaluation import OneTimeEvalBase
from full_model import get_model
class EvalRunner(OneTimeEvalBase):
def __init__(self,
sess,
model,
dataset,
opt,
model_opt,
output_folder,
threshold_list,
analyzer_names,
foreground_folder=None,
render_gt=False,
render_output=False,
output_count=False):
outputs = ['y_out', 's_out']
if not os.path.exists(output_folder):
os.makedirs(output_folder)
if threshold_list is None:
threshold_list = np.arange(10) * 0.1
if analyzer_names is None:
analyzer_names = [
'sbd', 'wt_cov', 'unwt_cov', 'fg_dice', 'fg_iou', 'fg_iou_all',
'bg_iou_all', 'avg_fp', 'avg_fn', 'avg_pr', 'avg_re', 'obj_pr',
'obj_re', 'count_acc', 'count_mse', 'dic', 'dic_abs'
]
self.output_folder = output_folder
self.threshold_list = threshold_list
self.analyzer_names = analyzer_names
self.foreground_folder = foreground_folder
self.analyzers = []
self.render_gt = render_gt
if render_gt:
self.gt_render = RenderGroundtruthInstanceAnalyzer(
os.path.join(output_folder, 'gt'), dataset)
self.render_output = render_output
self.output_count = output_count
# Create a set of analyzers for each threshold.
for tt in threshold_list:
_analyzers = []
thresh_suffix = ' {:.2f}'.format(tt)
thresh_folder = '{:02d}'.format(int(tt * 100))
for name in analyzer_names:
fname = os.path.join(output_folder, '{}.csv'.format(name))
_analyzers.append(
create_analyzer(
name, display_name=name + thresh_suffix, fname=fname))
if output_folder is not None:
if render_output:
_analyzers.append(
RenderInstanceAnalyzer(
os.path.join(output_folder, thresh_folder), dataset))
if output_count:
_analyzers.append(
CountAnalyzer(
os.path.join(output_folder, thresh_folder, 'count.csv')))
self.analyzers.append(_analyzers)
super(EvalRunner, self).__init__(sess, model, dataset, opt, model_opt,
outputs)
def read_foreground(self, idx, y_gt=None):
if self.foreground_folder is None:
return None
else:
fg = []
for ii in idx:
fg_fname = os.path.join(self.foreground_folder,
self.dataset.get_fname(ii))
fg_ = cv2.imread(fg_fname).astype('float32').max(axis=2) / 255.0
fg.append(fg_)
return fg
def write_log(self, results):
"""Process results
Args:
results: y_out, s_out
"""
inp = results['_batches'][0]
y_gt_h = self.dataset.get_full_size_labels(
inp['idx_map'], timespan=results['y_out'].shape[1])
y_out = results['y_out']
s_out = results['s_out']
# Multi-class
if len(s_out.shape) == 3:
s_out = s_out[:, :, 0]
y_out, s_out = pp.apply_confidence(y_out, s_out)
fg = self.read_foreground(inp['idx_map'])
y_out = pp.upsample(y_out, y_gt_h)
if fg is not None:
if not self.opt['no_morph']:
y_out = pp.morph(y_out)
y_out = pp.apply_one_label(y_out)
for tt, thresh in enumerate(self.threshold_list):
y_out_thresh = pp.apply_threshold(y_out, thresh)
if fg is not None:
y_out_thresh = pp.mask_foreground(y_out_thresh, fg)
y_out_thresh, s_out = pp.remove_tiny(
y_out_thresh, s_out, threshold=self.opt['remove_tiny'])
iou_pairwise = [
f_iou_pairwise(a, b) for a, b in zip(y_out_thresh, y_gt_h)
]
results_thresh = {
'y_out': y_out_thresh,
'y_gt': y_gt_h,
's_out': s_out,
's_gt': inp['_s_gt'],
'iou_pairwise': iou_pairwise,
'indices': inp['idx_map']
}
# Run each analyzer.
[aa.stage(results_thresh) for aa in self.analyzers[tt]]
# Plot groundtruth.
if self.render_gt:
self.gt_render.stage(results_thresh)
def finalize(self):
"""Finalize report"""
for tt, thresh in enumerate(self.threshold_list):
[aa.finalize() for aa in self.analyzers[tt]]
class EvalExperiment(EvalExperimentBase):
def get_runner(self, split):
if self.opt['output'] is None:
output_folder = self.opt['restore']
else:
output_folder = self.opt['output']
output_folder_prefix = 'output_'
output_folder_split = os.path.join(output_folder,
output_folder_prefix + split)
return EvalRunner(
self.sess,
self.model,
self.dataset[split],
self.opt,
self.model_opt,
output_folder_split,
self.opt['threshold_list'],
self.opt['analyzers'],
foreground_folder=self.opt['foreground_folder'],
render_output=True)
def get_model(self):
self.model_opt['use_knob'] = False
return get_model(self.model_opt)
class MyEvalArgsParser(EvalArgsParser):
def add_args(self):
self.parser.add_argument('--foreground_folder', default=None)
self.parser.add_argument('--threshold_list', default=None)
self.parser.add_argument('--analyzers', default=None)
self.parser.add_argument('--test', action='store_true')
self.parser.add_argument('--no_morph', action='store_true')
self.parser.add_argument('--remove_tiny', default=0, type=int)
super(MyEvalArgsParser, self).add_args()
def make_opt(self, args):
opt = super(MyEvalArgsParser, self).make_opt(args)
opt['foreground_folder'] = args.foreground_folder
opt['no_morph'] = args.no_morph
opt['remove_tiny'] = args.remove_tiny
if args.threshold_list is None:
opt['threshold_list'] = [0.3] # Usually 0.3 is good threshold.
else:
opt['threshold_list'] = [
float(tt) for tt in args.threshold_list.split(',')
]
if args.analyzers is None:
if args.test:
opt['analyzers'] = []
else:
opt['analyzers'] = [
'sbd', 'wt_cov', 'unwt_cov', 'avg_fp', 'avg_fn', 'avg_pr', 'avg_re',
'obj_pr', 'obj_re', 'count_acc', 'count_mse', 'dic', 'dic_abs'
]
else:
if args.analyzers == '':
opt['analyzers'] = []
else:
opt['analyzers'] = args.analyzers.split(',')
return opt
def main():
parsers = {'default': MyEvalArgsParser(), 'data': DataArgsParser()}
EvalExperiment.create_from_main(
'eval', parsers=parsers, description='Evaluate output').run()
if __name__ == '__main__':
main()